Smart Microparticles with a pH-responsive Macropore for Targeted Oral Drug Delivery

被引:33
|
作者
Kumar, Ankit
Montemagno, Carlo [1 ]
Choi, Hyo-Jick [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
比尔及梅琳达.盖茨基金会;
关键词
OF-THE-ART; CONTROLLED-RELEASE; POLYMER DEGRADATION; PHASE-TRANSITION; PROTEIN; MICROENCAPSULATION; ULTRASOUND; STABILITY; GENE; STABILIZATION;
D O I
10.1038/s41598-017-03259-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of a smart microencapsulation system programmed to actively respond to environmental pH change has long been recognized a key technology in pharmaceutical and food sciences. To this end, we developed hollow microparticles (MPs) with self-controlled macropores that respond to environmental pH change, using an Oil-in-Water emulsion technique, for oral drug delivery. We observed that freeze-drying of MPs induced closure of macropores. The closing/opening behavior of macropores was confirmed by exposing MPs encapsulating different ingredients (sulforhodamine b, fluorescent nanoparticles, and lactase) to simulated gastrointestinal (GI) fluids. MPs maintained their intact, closed pore structure in gastric pH, and subsequent exposure to intestinal pH resulted in pore opening and ingredients release. Further, MPs displayed higher protection (> 15 times) than commercial lactase formulation, indicating the protective ability of the system against harsh GI conditions. This study showed development of a hybrid MP system combining the advantages of solid particles and hollow capsules, exhibiting easy solvent-free loading mechanism and smart protection/release of encapsulates through controllable macropores. Ultimately, our MPs system strives to usher a new research area in smart drug delivery systems and advance the current oral drug delivery technology by solving major challenges in targeted delivery of pH-sensitive therapeutics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Facile fabrication of microparticles with pH-responsive macropores for small intestine targeted drug formulation
    Homayun, Bahman
    Sun, Chengmeng
    Kumar, Ankit
    Montemagno, Carlo
    Choi, Hyo-Jick
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2018, 128 : 316 - 326
  • [2] Zinc Zeolite as a Carrier for Tumor Targeted and pH-responsive Drug Delivery
    Mariusz Sandomierski
    Marcel Jakubowski
    Maria Ratajczak
    Monika Pokora
    Adam Voelkel
    Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33 : 1667 - 1674
  • [3] Zinc Zeolite as a Carrier for Tumor Targeted and pH-responsive Drug Delivery
    Sandomierski, Mariusz
    Jakubowski, Marcel
    Ratajczak, Maria
    Pokora, Monika
    Voelkel, Adam
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2023, 33 (06) : 1667 - 1674
  • [4] Biodegradable Thermo- and pH-Responsive Hydrogels for Oral Drug Delivery
    Zhang, Zhe
    Chen, Li
    Deng, Mingxiao
    Bai, Yunyan
    Chen, Xuesi
    Jing, Xiabin
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2011, 49 (13) : 2941 - 2951
  • [5] A monolithic polymeric microdevice for pH-responsive drug delivery
    Chen, Jian
    Chu, Michael
    Koulajian, Khajag
    Wu, Xiao Yu
    Giacca, Adria
    Sun, Yu
    BIOMEDICAL MICRODEVICES, 2009, 11 (06) : 1251 - 1257
  • [6] Biomineralization inspired surface engineering of nanocarriers for pH-responsive, targeted drug delivery
    Chen, Zhaowei
    Li, Zhenhua
    Lin, Youhui
    Yin, Meili
    Ren, Jinsong
    Qu, Xiaogang
    BIOMATERIALS, 2013, 34 (04) : 1364 - 1371
  • [7] pH-Responsive Drug-Delivery Systems
    Zhu, Ying-Jie
    Chen, Feng
    CHEMISTRY-AN ASIAN JOURNAL, 2015, 10 (02) : 284 - 305
  • [8] pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms
    Liu, Lin
    Yao, WenDong
    Rao, YueFeng
    Lu, XiaoYang
    Gao, JianQing
    DRUG DELIVERY, 2017, 24 (01) : 569 - 581
  • [9] Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms
    Zhou, Jiayi
    Horev, Benjamin
    Hwang, Geelsu
    Klein, Marlise I.
    Koo, Hyun
    Benoit, Danielle S. W.
    JOURNAL OF MATERIALS CHEMISTRY B, 2016, 4 (18) : 3075 - 3085
  • [10] Anisotropic, Hydrogel Microparticles as pH-Responsive Drug Carriers for Oral Administration of 5-FU
    Teora, Serena P.
    Panavaite, Elada
    Sun, Mingchen
    Kiffen, Bas
    Wilson, Daniela A.
    PHARMACEUTICS, 2023, 15 (05)