Solving fuzzy quadratic programming problems based on ABS algorithm

被引:4
|
作者
Ghanbari, Reza [1 ]
Ghorbani-Moghadam, Khatere [2 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, Mashhad, Razavi Khorasan, Iran
[2] Sharif Univ Technol, Fac Math Sci, Tehran, Iran
关键词
Fuzzy quadratic programming problem; ABS algorithm; Ranking function; OPTIMIZATION; DUALITY;
D O I
10.1007/s00500-019-04013-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, Ghanbari and Mahdavi-Amiri (Appl Math Model 34:3363-3375, 2010) gave the general compromised solution of an LR fuzzy linear system using ABS algorithm. Here, using this general solution, we solve quadratic programming problems with fuzzy LR variables. We convert fuzzy quadratic programming problem to a crisp quadratic problem by using general solution of fuzzy linear system. By using this method, the crisp optimization problem has fewer variables in comparison with other methods, specially when rank of the coefficient matrix is full. Thus, solving the fuzzy quadratic programming problem by using our proposed method is computationally easier than the solving fuzzy quadratic programming problem by using ranking function. Also, we study the fuzzy quadratic programming problem with symmetric variables. We show that, in this case, the associate quadratic programming problem is a convex problem, and thus, we able to find the global optimal.
引用
收藏
页码:11343 / 11349
页数:7
相关论文
共 50 条
  • [21] Fuzzy costs in quadratic programming problems
    Silva, Ricardo C.
    Cruz, Carlos
    Verdegay, Jose L.
    FUZZY OPTIMIZATION AND DECISION MAKING, 2013, 12 (03) : 231 - 248
  • [22] Fuzzy costs in quadratic programming problems
    Ricardo C. Silva
    Carlos Cruz
    José L. Verdegay
    Fuzzy Optimization and Decision Making, 2013, 12 : 231 - 248
  • [23] An interactive approach based on a genetic algorithm for a type of quadratic programming problems with fuzzy objective and resources
    Tang, JF
    Wang, DW
    COMPUTERS & OPERATIONS RESEARCH, 1997, 24 (05) : 413 - 422
  • [24] GLOBAL OPTIMIZATION ALGORITHM FOR SOLVING BILEVEL PROGRAMMING PROBLEMS WITH QUADRATIC LOWER LEVELS
    Hermanns, Paul B.
    Van Thoai, Nguyen
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2010, 6 (01) : 177 - 196
  • [25] WOLFES METHODS FOR SOLVING PROBLEMS OF QUADRATIC PROGRAMMING
    MANAS, M
    ZELINKA, J
    EKONOMICKO-MATEMATICKY OBZOR, 1967, 3 (04): : 465 - 477
  • [26] ON SOLVING MATRIX QUADRATIC-PROGRAMMING PROBLEMS
    KABE, DG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 161 (01) : 212 - 217
  • [27] The PPADMM Method for Solving Quadratic Programming Problems
    Shen, Hai-Long
    Tang, Xu
    MATHEMATICS, 2021, 9 (09)
  • [28] Solving Real-World Fuzzy Quadratic Programming Problems by Dual Parametric Approach
    Coelho, Ricardo
    FUZZY LOGIC IN INTELLIGENT SYSTEM DESIGN: THEORY AND APPLICATIONS, 2018, 648 : 33 - 38
  • [29] An α-fuzzy goal approximate algorithm for solving fuzzy multiple objective linear programming problems
    Lu, Jie
    Ruan, Da
    Wu, Fengjie
    Zhang, Guangquan
    SOFT COMPUTING, 2007, 11 (03) : 259 - 267
  • [30] An α-Fuzzy Goal Approximate Algorithm for Solving Fuzzy Multiple Objective Linear Programming Problems
    Jie Lu
    Da Ruan
    Fengjie Wu
    Guangquan Zhang
    Soft Computing, 2007, 11