Sulphide Globules in a Porcellanite-Buchite Composite Xenolith from Stromboli Volcano (Aeolian Islands, Southern Italy): Products of Open-System Igneous Pyrometamorphism

被引:1
作者
Renzulli, Alberto [1 ]
Taussi, Marco [1 ]
Brink, Frank J. [2 ]
Del Moro, Stefano [3 ]
Henley, Richard W. [4 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate, I-61029 Urbino, Italy
[2] Australian Natl Univ, Ctr Adv Microscopy, Acton, ACT 0200, Australia
[3] Spin Off Univ Urbino Carlo Bo, Geo In Tech Srl, I-61029 Urbino, Italy
[4] Australian Natl Univ, Res Sch Phys, ARC Training Ctr M3D Innovat, Acton, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
igneous pyrometamorphism; gas-solid reactions; buchite; porcellanite; hydrothermally-altered volcanics; sulphide; pyrrhotite; Stromboli; Aeolian Islands; HYDROTHERMAL SYSTEM; CRUSTAL XENOLITHS; HIGH-TEMPERATURE; GABBROIC NODULES; MAGMA STORAGE; CRYSTALLIZATION; CO2; INSIGHTS; ERUPTION; BASALT;
D O I
10.3390/min11060639
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Pyrometamorphism is the highest temperature end-member of the sanidinite facies (high-temperature, low-pressure contact metamorphism) and comprises both subsolidus and partial melting reactions which may locally lead to cryptocrystalline-glassy rocks (i.e., porcellanites and buchites). A wide range of pyrometamorphic ejecta, with different protoliths from Stromboli volcano, have been investigated over the last two decades. Among these, a heterogeneous (composite) glassy sample (B1) containing intimately mingled porcellanite and buchite lithotypes was selected to be studied through new FESEM-EDX and QEMSCAN (TM) mineral mapping investigations, coupled with the already available bulk rock composition data. This xenolith was chosen because of the unique and intriguing presence of abundant Cu-Fe sulphide globules within the buchite glass in contrast with the well-known general absence of sulphides in Stromboli basalts or their subvolcanic counterparts (dolerites) due to the oxygen fugacity of NNO + 0.5-NNO + 1 (or slightly lower) during magma crystallization. The investigated sample was ejected during the Stromboli paroxysm of 5 April 2003 when low porphyritic (LP) and high porphyritic (HP) basalts were erupted together. Both types of magmas are present as coatings of the porcellanite-buchite sample and were responsible for the last syn-eruptive xenoliths's rim made of a thin crystalline-glassy selvage. The complex petrogenetic history of the B1 pyrometamorphic xenolith is tentatively explained in the framework of the shallow subvolcanic processes and vent system dynamics occurred shortly before (January-March 2003) the 5 April 2003 paroxysm. A multistep petrogenesis is proposed to account for the unique occurrence of sulphide globules in this composite pyrometamorphic xenolith. The initial stage is the pyrometamorphism of an already hydrothermally leached extrusive/subvolcanic vent system wall rock within the shallow volcano edifice. Successively, fragments of this wall rock were subject to further heating by continuous gas flux and interaction with Stromboli HP basalt at temperatures above 1000 degrees C to partially melt the xenolith. This is an open system process involving continuous exchange of volatile components between the gas flux and the evolving silicate melt. It is suggested that the reaction of plagioclase and ferromagnesian phenocrysts with SO2 and HCl from the volcanic gas during diffusion into the melt led to the formation of molecular CaCl in the melt, which then was released to the general gas flux. Sulphide formation is the consequence of the reaction of HCl dissolved into the melt from the gas phase, resulting in the release of H-2 into the melt and lowering of f(O2) driving reduction of the dissolved SO2.
引用
收藏
页数:21
相关论文
empty
未找到相关数据