New discrete orthogonal moments for signal analysis

被引:15
作者
Asli, Barmak Honarvar Shakibaei [1 ]
Flusser, Jan [1 ,2 ]
机构
[1] Acad Sci Czech Republ, Inst Informat Theory & Automat, Pod Voddrenskou Vezi 4, CR-18208 Prague 8, Czech Republic
[2] Univ Econ, Fac Management, Jindrichuv Hrade, Czech Republic
关键词
Orthogonal polynomials; Moment functions; Z-transform; Rodrigues formula; Hypergeometric form; IMAGE-ANALYSIS; FIR;
D O I
10.1016/j.sigpro.2017.05.023
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper addresses some computational aspects and applications of the polynomial unbiased finite impulse response functions originally derived by Shmaliy as a new class of a one-parameter family of discrete orthogonal polynomials. We present two new explicit formulas to compute these polynomials directly. They are based on the discrete Rodrigues' representation and hypergeometric form, respectively. These straightforward calculations lead us to propose another discrete signal representation in moment domain. Experimental results show a comparison between the proposed moments and discrete Chebyshev moments in terms of noise-free/noisy signal feature extraction and reconstruction error. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 73
页数:17
相关论文
共 22 条
[1]  
[Anonymous], 2014, CN Patent App, Patent No. [CN 201,410,374,455, 201410374455]
[2]  
[Anonymous], 1974, HDB MATH FUNCTIONS F, DOI DOI 10.5555/1098650
[3]  
Flusser J., 2009, Moments and Moment Invariants in Pattern Recognition
[4]  
Flusser J., 2016, 2D and 3D image analysis by moments
[5]  
Gamboa-Rosales Hamurabi, 2013, ICIC Express Letters, V7, P2005
[6]  
Gamboa-Rosales H, 2013, 2013 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), P185, DOI 10.1109/ICEEE.2013.6676049
[7]   FIR-MEDIAN HYBRID FILTERS WITH PREDICTIVE FIR SUBSTRUCTURES [J].
HEINONEN, P ;
NEUVO, Y .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (06) :892-899
[8]  
Holmaker K., 1977, DISCRETE RODRIGUES F
[9]   Enhancing noisy speech signals using orthogonal moments [J].
Jassim, Wissam A. ;
Paramesran, Raveendran ;
Zilany, Muhammad S. A. .
IET SIGNAL PROCESSING, 2014, 8 (08) :891-905
[10]  
Jordan K., 1965, Calculus of Finite Differences, VVolume 33