On-Chip Metamaterial Enabled Wavelength (De)Multiplexer

被引:20
作者
Zhao, Yaotian [1 ]
Xiang, Jinlong [1 ]
He, Yu [1 ]
Yin, Yuchen [1 ]
He, An [1 ]
Zhang, Yong [1 ]
Yang, Zongyin [2 ]
Guo, Xuhan [1 ]
Su, Yikai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, State Key Lab Adv Opt Commun Syst & Networks, Shanghai 200240, Peoples R China
[2] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
上海市自然科学基金; 国家重点研发计划;
关键词
metamaterials; mode manipulation; multimode waveguides; silicon photonics; wavelength-division multiplexing; BRAGG SIDEWALL GRATINGS; ULTRA-COMPACT; DIRECTIONAL-COUPLERS; FLAT-TOP; SILICON; CWDM;
D O I
10.1002/lpor.202200005
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Wavelength-division multiplexing (WDM) technology can offer considerable parallelism for large-capacity data communications. While several configurations have been demonstrated to realize on-chip WDM systems, their practical applications might be hindered by large footprints or compromised performances. Recently, metamaterial-assisted silicon photonics is emerging for on-chip light manipulation by subwavelength-scale control of optical wavefronts. They can reach more compact footprints and broadband functionalities beyond the classical waveguide-based architectures. Herein, wavelength (de)multiplexers are experimentally demonstrated in the subwavelength-structured metamaterials regime with highly compact footprints. Two-dimensional metamaterials composed of quasi-periodic dielectric perturbation arrays patterned on a multimode waveguide are proposed to stimulate multiple high-order waveguide modes at different wavelengths, which are then coupled to different WDM channels by cascading mode (de)multiplexers. The four-channel wavelength (de)multiplexer is demonstrated in a box-like spectrum with a compact footprint of 2.5 x 250 mu m(2), with the measured losses less than 2 dB and channel crosstalk less than -14.3 dB. By varying the patterned metamaterial structures, the proposed devices also have the merits of flexible operating wavelengths and bandwidths. The concept features large scalability, compactness, and competitive performance, which can offer versatile on-chip light manipulation and significantly improve the integration density for various on-chip WDM optical systems.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Silicon microring resonators [J].
Bogaerts, Wim ;
De Heyn, Peter ;
Van Vaerenbergh, Thomas ;
De Vos, Katrien ;
Selvaraja, Shankar Kumar ;
Claes, Tom ;
Dumon, Pieter ;
Bienstman, Peter ;
Van Thourhout, Dries ;
Baets, Roel .
LASER & PHOTONICS REVIEWS, 2012, 6 (01) :47-73
[2]   Subwavelength-grating contradirectional couplers for large stopband filters [J].
Charron, Dominique ;
St-Yves, Jonathan ;
Jafari, Omid ;
LaRochelle, Sophie ;
Shi, Wei .
OPTICS LETTERS, 2018, 43 (04) :895-898
[3]   Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial [J].
Halir, Robert ;
Cheben, Pavel ;
Manuel Luque-Gonzalez, Jose ;
Dario Sarmiento-Merenguel, Jose ;
Schmid, Jens H. ;
Wanguemert-Perez, Gonzalo ;
Xu, Dan-Xia ;
Wang, Shurui ;
Ortega-Monux, Alejandro ;
Molina-Fernandez, Inigo .
LASER & PHOTONICS REVIEWS, 2016, 10 (06) :1039-1046
[4]  
He Y., 2021, OPTICAL FIBER COMMUN
[5]   Silicon High-Order Mode (De)Multiplexer on Single Polarization [J].
He, Yu ;
Zhang, Yong ;
Zhu, Qingming ;
An, Shaohua ;
Cao, Ruiyuan ;
Guo, Xuhan ;
Qiu, Ciyuan ;
Su, Yikai .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (24) :5746-5753
[6]   Wavelength division (de)multiplexing based on dispersive self-imaging [J].
Hu, Y. ;
Jenkins, R. M. ;
Gardes, F. Y. ;
Finlayson, E. D. ;
Mashanovich, G. Z. ;
Reed, G. T. .
OPTICS LETTERS, 2011, 36 (23) :4488-4490
[7]  
Li ZY, 2017, NAT NANOTECHNOL, V12, P675, DOI [10.1038/NNANO.2017.50, 10.1038/nnano.2017.50]
[8]   Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform [J].
Liu, Ansheng ;
Liao, Ling ;
Chetrit, Yoel ;
Basak, Juthika ;
Nguyen, Hat ;
Rubin, Doron ;
Paniccia, Mario .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (01) :23-32
[9]   Silicon photonic filters [J].
Liu, Dajian ;
Xu, Hongnan ;
Tan, Ying ;
Shi, Yaocheng ;
Dai, Daoxin .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2021, 63 (09) :2252-2268
[10]   Four-Channel CWDM (de)Multiplexers Using Cascaded Multimode Waveguide Gratings [J].
Liu, Dajian ;
Zhang, Ming ;
Shi, Yaocheng ;
Dai, Daoxin .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2020, 32 (04) :192-195