On random symmetric travelling salesman problems

被引:22
作者
Frieze, A [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
travelling salesman; probabilistic analysis;
D O I
10.1287/moor.1040.0105
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let the edges of the complete graph K-n be assigned independent uniform [0, 1] random edge weights. Let Z(TSP) and Z(2FAC) be the weights of the minimum length travelling salesman tour and minimum weight 2-factor, respectively. We show that whp \Z(TSP) - Z(2FAC)\ = o(1). The proof is obtained by the analysis of a polynomial time algorithm that finds a tour only a little longer than Z(2FAC).
引用
收藏
页码:878 / 890
页数:13
相关论文
共 14 条
[1]   The ζ(2) limit in the random assignment problem [J].
Aldous, DJ .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (04) :381-418
[2]   FAST PROBABILISTIC ALGORITHMS FOR HAMILTONIAN CIRCUITS AND MATCHINGS [J].
ANGLUIN, D ;
VALIANT, LG .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1979, 18 (02) :155-193
[3]  
Balas E, 1985, TRAVELING SALESMAN P
[4]  
Cooper C, 2000, RANDOM STRUCT ALGOR, V16, P369, DOI 10.1002/1098-2418(200007)16:4<369::AID-RSA6>3.0.CO
[5]  
2-J
[6]   ON PATCHING ALGORITHMS FOR RANDOM ASYMMETRIC TRAVELING SALESMAN PROBLEMS [J].
DYER, ME ;
FRIEZE, AM .
MATHEMATICAL PROGRAMMING, 1990, 46 (03) :361-378
[7]   ON THE CONNECTIVITY OF RANDOM M-ORIENTABLE GRAPHS AND DIGRAPHS [J].
FENNER, TI ;
FRIEZE, AM .
COMBINATORICA, 1982, 2 (04) :347-359
[8]   THE SHORTEST-PATH PROBLEM FOR GRAPHS WITH RANDOM ARC-LENGTHS [J].
FRIEZE, AM ;
GRIMMETT, GR .
DISCRETE APPLIED MATHEMATICS, 1985, 10 (01) :57-77
[9]   ON THE VALUE OF A RANDOM MINIMUM SPANNING TREE PROBLEM [J].
FRIEZE, AM .
DISCRETE APPLIED MATHEMATICS, 1985, 10 (01) :47-56
[10]  
FRIEZE AM, 2001, P 15 ANN ACM SIAM S