CLOSED UNIVERSAL SUBSPACES OF SPACES OF INFINITELY DIFFERENTIABLE FUNCTIONS

被引:4
作者
Charpentier, Stephane [1 ]
Menet, Quentin [2 ]
Mouze, Augustin [3 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, UMR 8524, F-59650 Villeneuve Dascq, France
[2] Univ Mons, Inst Math, B-7000 Mons, Belgium
[3] Lab Paul Painleve, UMR 8524, F-59651 Villeneuve Dascq, France
关键词
infinitely differentiable real functions; spaceability; universality; universal series; Taylor series; HYPERCYCLIC SUBSPACES; FRECHET SPACE; SERIES; OPERATORS; THEOREM;
D O I
10.5802/aif.2848
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit the first examples of Frechet spaces which contain a closed infinite dimensional subspace of universal series, but no restricted universal series. We consider classical Frechet spaces of infinitely differentiable functions which do not admit a continuous norm. Furthermore, this leads us to establish some more general results for sequences of operators acting on Frechet spaces with or without a continuous norm. Additionally, we give a characterization of the existence of a closed subspace of universal series in the Frechet space K-N.
引用
收藏
页码:297 / 325
页数:29
相关论文
共 19 条
  • [1] Aron R., 2007, ADV COURSES MATH ANA, P1
  • [2] Abstract theory of universal series and applications
    Bayart, F.
    Grosse-Erdmann, K. -G.
    Nestoridis, V.
    Papadimitropoulos, C.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2008, 96 : 417 - 463
  • [3] Linearity of sets of strange functions
    Bayart, F
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) : 291 - 303
  • [4] Hypercyclic subspaces in omega
    Bès, J
    Conejero, JA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 16 - 23
  • [5] Universal and chaotic multipliers on spaces of operators
    Bonet, J
    Martínez-Giménez, F
    Peris, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 297 (02) : 599 - 611
  • [6] Bonet J, 2010, RACSAM REV R ACAD A, V104, P427, DOI 10.5052/RACSAM.2010.26
  • [7] Borel Emile, 1895, ANN SCI ECOLE NORM S, V12, P9, DOI DOI 10.24033/ASENS.406
  • [8] On the closed subspaces of universal series in Banach spaces and Frechet spaces
    Charpentier, Stephane
    [J]. STUDIA MATHEMATICA, 2010, 198 (02) : 121 - 145
  • [9] Universal families and hypercyclic operators
    Grosse-Erdmann, KG
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (03) : 345 - 381
  • [10] KOMATSU H, 1973, J FAC SCI U TOKYO 1, V20, P25