Towards fine-scale population stratification modeling based on kernel principal component analysis and random forest

被引:2
作者
Zhang, Weiwen [1 ]
Cheng, Lianglun [1 ]
Huang, Guoheng [1 ]
机构
[1] Guangdong Univ Technol, Sch Comp, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Association study; Kernel principal component analysis; Population stratification; Random forest; ANCESTRY ESTIMATION; PCA;
D O I
10.1007/s13258-021-01057-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background Population stratification modeling is essential in Genome-Wide Association Studies. Objective In this paper, we aim to build a fine-scale population stratification model to efficiently infer individual genetic ancestry. Methods Kernel Principal Component Analysis (PCA) and random forest are adopted to build the population stratification model, together with parameter optimization. We explore different PCA methods, including standard PCA and kernel PCA to extract relevant features from the genotype data that is transformed by vcf2geno, a pipeline from LASER software. These extracted features are fed into a random forest for ensemble learning. Parameter tuning is performed to jointly find the optimal number of principal components, kernel function for PCA and parameters of the random forest. Results Experiments based on HGDP dataset show that kernel PCA with Sigmoid function and Gaussian function can achieve higher prediction accuracy than the standard PCA. Compared to standard PCA with the two principal components, the accuracy by using KPCA-Sigmoid with the optimal number of principal components can achieve around 100% and 200% improvement for East Asian and European populations, respectively. Conclusion With the optimal parameter configuration on both PCA and random forest, our proposed method can infer the individual genetic ancestry more accurately, given their variants.
引用
收藏
页码:1143 / 1155
页数:13
相关论文
共 29 条
[1]   Fast model-based estimation of ancestry in unrelated individuals [J].
Alexander, David H. ;
Novembre, John ;
Lange, Kenneth .
GENOME RESEARCH, 2009, 19 (09) :1655-1664
[2]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[3]  
Bishop C. M., 2006, PATTERN RECOGN
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   A practical introduction to Random Forest for genetic association studies in ecology and evolution [J].
Brieuc, Marine S. O. ;
Waters, Charles D. ;
Drinan, Daniel P. ;
Naish, Kerry A. .
MOLECULAR ECOLOGY RESOURCES, 2018, 18 (04) :755-766
[6]   Population stratification and spurious allelic association [J].
Cardon, LR ;
Palmer, LJ .
LANCET, 2003, 361 (9357) :598-604
[7]   Random forests for genomic data analysis [J].
Chen, Xi ;
Ishwaran, Hemant .
GENOMICS, 2012, 99 (06) :323-329
[8]  
Cheung WC, 2018, ANN C PHM SOC, V10
[9]   Population structure, differential bias and genomic control in a large-scale, case-control association study [J].
Clayton, DG ;
Walker, NM ;
Smyth, DJ ;
Pask, R ;
Cooper, JD ;
Maier, LM ;
Smink, LJ ;
Lam, AC ;
Ovington, NR ;
Stevens, HE ;
Nutland, S ;
Howson, JMM ;
Faham, M ;
Moorhead, M ;
Jones, HB ;
Falkowski, M ;
Hardenbol, P ;
Willis, TD ;
Todd, JA .
NATURE GENETICS, 2005, 37 (11) :1243-1246
[10]  
Hellwege Jacklyn N, 2017, Curr Protoc Hum Genet, V95, DOI 10.1002/cphg.48