Determination of the spin-lifetime anisotropy in graphene using oblique spin precession

被引:81
作者
Raes, Bart [1 ,2 ]
Scheerder, Jeroen E. [3 ]
Costache, Marius V. [1 ,2 ]
Bonell, Frederic [1 ,2 ]
Sierra, Juan F. [1 ,2 ]
Cuppens, Jo [1 ,2 ]
Van de Vondel, Joris [3 ]
Valenzuela, Sergio O. [1 ,2 ,4 ]
机构
[1] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[2] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain
[3] Katholieke Univ Leuven, INPAC, Dept Phys & Astron, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[4] ICREA, Barcelona 08070, Spain
基金
欧洲研究理事会;
关键词
ELECTRICAL DETECTION; LAYER GRAPHENE; RELAXATION; TRANSPORT; SINGLE; METAL;
D O I
10.1038/ncomms11444
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We determine the spin-lifetime anisotropy of spin-polarized carriers in graphene. In contrast to prior approaches, our method does not require large out-of-plane magnetic fields and thus it is reliable for both low-and high-carrier densities. We first determine the in-plane spin lifetime by conventional spin precession measurements with magnetic fields perpendicular to the graphene plane. Then, to evaluate the out-of-plane spin lifetime, we implement spin precession measurements under oblique magnetic fields that generate an out-of-plane spin population. We find that the spin-lifetime anisotropy of graphene on silicon oxide is independent of carrier density and temperature down to 150 K, and much weaker than previously reported. Indeed, within the experimental uncertainty, the spin relaxation is isotropic. Altogether with the gate dependence of the spin lifetime, this indicates that the spin relaxation is driven by magnetic impurities or random spin-orbit or gauge fields.
引用
收藏
页数:7
相关论文
共 46 条
[1]   Theory of spin-orbit-induced spin relaxation in functionalized graphene [J].
Bundesmann, Jan ;
Kochan, Denis ;
Tkatschenko, Fedor ;
Fabian, Jaroslav ;
Richter, Klaus .
PHYSICAL REVIEW B, 2015, 92 (08)
[2]   Charge transport and inhomogeneity near the minimum conductivity point in graphene [J].
Cho, Sungjae ;
Fuhrer, Michael S. .
PHYSICAL REVIEW B, 2008, 77 (08)
[3]   Lateral metallic devices made by a multiangle shadow evaporation technique [J].
Costache, Marius V. ;
Bridoux, German ;
Neumann, Ingmar ;
Valenzuela, Sergio O. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (04)
[4]  
Dery H., 2012, IEEE T ELECTRON DEV, V59
[5]   Spin dynamics and relaxation in graphene dictated by electron-hole puddles [J].
Dinh Van Tuan ;
Ortmann, Frank ;
Cummings, Aron W. ;
Soriano, David ;
Roche, Stephan .
SCIENTIFIC REPORTS, 2016, 6
[6]   Pseudospin-driven spin relaxation mechanism in graphene [J].
Dinh Van Tuan ;
Ortmann, Frank ;
Soriano, David ;
Valenzuela, Sergio O. ;
Roche, Stephan .
NATURE PHYSICS, 2014, 10 (11) :857-863
[7]   Highly spin-polarized carbon-based spinterfaces [J].
Djeghloul, F. ;
Garreau, G. ;
Gruber, M. ;
Joly, L. ;
Boukari, S. ;
Arabski, J. ;
Bulou, H. ;
Scheurer, F. ;
Hallal, A. ;
Bertran, F. ;
Le Fevre, P. ;
Taleb-Ibrahimi, A. ;
Wulfhekel, W. ;
Beaurepaire, E. ;
Hajjar-Garreau, S. ;
Wetzel, P. ;
Bowen, M. ;
Weber, W. .
CARBON, 2015, 87 :269-274
[8]  
Dlubak B, 2012, NAT PHYS, V8, P557, DOI [10.1038/NPHYS2331, 10.1038/nphys2331]
[9]  
Drögeler M, 2014, NANO LETT, V14, P6050, DOI [10.1021/n1501278c, 10.1021/nl501278c]
[10]   Acoustic phonons and spin relaxation in graphene nanoribbons [J].
Droth, Matthias ;
Burkard, Guido .
PHYSICAL REVIEW B, 2011, 84 (15)