Modalities Based on Double Negation

被引:2
作者
Dombi, Jozsef [1 ]
机构
[1] Univ Szeged, Dept Informat, Szeged, Hungary
来源
NEW TRENDS IN AGGREGATION THEORY | 2019年 / 981卷
关键词
Negation; Modalities; Pliant logic; Necessity and possibility operators; FUZZY; LOGICS;
D O I
10.1007/978-3-030-19494-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modal operators play an important role in fuzzy theory, and in recent years researchers have devoted more effort on this topic. Here we concentrate on continuous strictly monotonously increasing Archimedian t-norms. In our study, we will construct modal operators related to negation operators and we introduce graded modal operators.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 14 条
[1]   Fuzzy logics with an additional involutive negation [J].
Cintula, Petr ;
Klement, Erich Peter ;
Mesiar, Radko ;
Navara, Mirko .
FUZZY SETS AND SYSTEMS, 2010, 161 (03) :390-411
[2]   Towards a general class of operators for fuzzy systems [J].
Dombi, Jozsef .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (02) :477-484
[3]   On a certain class of aggregative operators [J].
Dombi, Jozsef .
INFORMATION SCIENCES, 2013, 245 :313-328
[4]   DeMorgan systems with an infinitely many negations in the strict monotone operator case [J].
Dombi, Jozsef .
INFORMATION SCIENCES, 2011, 181 (08) :1440-1453
[5]   Residuated fuzzy logics with an involutive negation [J].
Esteva, F ;
Godo, L ;
Hájek, P ;
Navara, M .
ARCHIVE FOR MATHEMATICAL LOGIC, 2000, 39 (02) :103-124
[6]   A logical approach to fuzzy truth hedges [J].
Esteva, Francesc ;
Godo, Lluis ;
Noguera, Caries .
INFORMATION SCIENCES, 2013, 232 :366-385
[7]   T-norm-based logics with an independent involutive negation [J].
Flaminio, Tommaso ;
Marchioni, Enrico .
FUZZY SETS AND SYSTEMS, 2006, 157 (24) :3125-3144
[8]   Triangular norm-based mathematical fuzzy logics [J].
Gottwald, S ;
Hájek, P .
LOGICAL, ALGEBRAIC, ANALYTIC, AND PROBABILISTIC ASPECTS OF TRIANGULAR NORMS, 2005, :275-299
[9]  
Hajek P., 1998, Metamathematics of Fuzzy Logic
[10]  
Lukasiewicz J., 1921, PRZEGLAD FILOZOFICZN, V23, P189