Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy

被引:65
作者
Zhang, Yanyan [1 ]
Wu, Minghao [2 ]
Wu, Mingle [3 ]
Zhu, Jingyi [4 ]
Zhang, Xuening [1 ]
机构
[1] Tianjin Med Univ, Hosp 2, Dept Med Imaging, Tianjin 300211, Peoples R China
[2] Tianjin Med Univ, Canc Inst & Hosp, Natl Clin Res Ctr Canc, Dept Radiol,Tianjins Clin Res Ctr Canc Key Lab Ca, Tianjin 300060, Peoples R China
[3] Inst Natl Rech Sci Energie Mat & Telecomm, Varennes, PQ J3X 1S2, Canada
[4] Nanjing Tech Univ, Sch Pharmaceut Sci, Nanjing 211816, Jiangsu, Peoples R China
关键词
REDUCED GRAPHENE OXIDE; ENHANCED RAMAN-SCATTERING; MRI CONTRAST AGENTS; GUIDED PHOTOTHERMAL THERAPY; PEPTIDE-BASED PROBES; IN-VIVO; MAGNETIC-RESONANCE; QUANTUM DOTS; FLUORESCENT CARBON; FUNCTIONALIZED FULLERENES;
D O I
10.1021/acsomega.8b01071
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular imaging has been widely used not only as an important detection technology in the field of medical imaging for cancer diagnosis but also as a theranostic approach for cancer in recent years. Multifunctional carbon based nanomaterials (MCBNs), characterized by unparalleled optical, electronic, and thermal properties, have attracted increasing interest and demonstrably hold the greatest promise in biomolecular imaging and therapy. As such, it should come as no surprise that MCBNs have already revealed a great deal of potential applications in biomedical areas, such as bioimaging, drug delivery, and tumor therapy. Carbon nanomaterials can be categorized as graphene, single-walled carbon nanotubes, mesoporous carbon, nanodiamonds, fullerenes, or carbon dots on the basis of their morphologies. In this article, reports of the use of MCBNs in various chemical conjugation/functionalization strategies, focusing on their applications in cancer molecular imaging and imaging-guided therapy, will be lcomprehensively summarized. MCBNs show the possibility to serve as optimal candidates for precise cancer biotheranostics.
引用
收藏
页码:9126 / 9145
页数:20
相关论文
共 223 条
[1]  
Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/nmat2858, 10.1038/NMAT2858]
[2]   Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes [J].
Ai, H ;
Flask, C ;
Weinberg, B ;
Shuai, X ;
Pagel, MD ;
Farrell, D ;
Duerk, J ;
Gao, JM .
ADVANCED MATERIALS, 2005, 17 (16) :1949-+
[3]  
Al Faraj A, 2015, NANOMEDICINE-UK, V10, P931, DOI [10.2217/NNM.14.145, 10.2217/nnm.14.145]
[4]   Nanodiamond as a Vector for siRNA Delivery to Ewing Sarcoma Cells [J].
Alhaddad, Anna ;
Adam, Marie-Pierre ;
Botsoa, Jacques ;
Dantelle, Geraldine ;
Perruchas, Sandrine ;
Gacoin, Thierry ;
Mansuy, Christelle ;
Lavielle, Solange ;
Malvy, Claude ;
Treussart, Francois ;
Bertrand, Jean-Remi .
SMALL, 2011, 7 (21) :3087-3095
[5]  
Ananta JS, 2010, NAT NANOTECHNOL, V5, P815, DOI [10.1038/NNANO.2010.203, 10.1038/nnano.2010.203]
[6]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[7]   Structure-assigned optical spectra of single-walled carbon nanotubes [J].
Bachilo, SM ;
Strano, MS ;
Kittrell, C ;
Hauge, RH ;
Smalley, RE ;
Weisman, RB .
SCIENCE, 2002, 298 (5602) :2361-2366
[8]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[9]   Direct Functionalization of Nanodiamond Particles Using Dopamine Derivatives [J].
Barras, Alexandre ;
Lyskawa, Joel ;
Szunerits, Sabine ;
Woisel, Patrice ;
Boukherroub, Rabah .
LANGMUIR, 2011, 27 (20) :12451-12457
[10]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]