Structure Preserving Compressive Sensing MRI Reconstruction using Generative Adversarial Networks

被引:25
作者
Deora, Puneesh [1 ]
Vasudeva, Bhavya [1 ]
Bhattacharya, Saumik [2 ]
Pradhan, Pyari Mohan [1 ]
机构
[1] IIT Roorkee, Dept ECE, Roorkee, Uttarakhand, India
[2] IIT Kharagpur, Dept E&ECE, Kharagpur, W Bengal, India
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020) | 2020年
关键词
D O I
10.1109/CVPRW50498.2020.00269
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates the acquisition of MR images by breaking the Nyquist sampling limit. In this work, a novel generative adversarial network (GAN) based framework for CS-MRI reconstruction is proposed. Leveraging a combination of patch-based discriminator and structural similarity index based loss, our model focuses on preserving high frequency content as well as fine textural details in the reconstructed image. Dense and residual connections have been incorporated in a U-net based generator architecture to allow easier transfer of information as well as variable network length. We show that our algorithm outperforms state-of-the-art methods in terms of quality of reconstruction and robustness to noise. Also, the reconstruction time, which is of the order of milliseconds, makes it highly suitable for real-time clinical use.
引用
收藏
页码:2211 / 2219
页数:9
相关论文
共 37 条
[1]   NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study [J].
Agustsson, Eirikur ;
Timofte, Radu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1122-1131
[2]  
[Anonymous], 2015, Tech. Rep.
[3]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[4]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[5]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[6]  
Bora A, 2017, PR MACH LEARN RES, V70
[7]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[8]  
Dong C., 2016, EUROPEAN C COMPUTER
[9]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306