Comparison of different scoring methods based on latent variable models of the PHQ-9: an individual participant data meta-analysis

被引:9
|
作者
Fischer, Felix [1 ,2 ,3 ,4 ]
Levis, Brooke [5 ,6 ,7 ]
Falk, Carl [8 ]
Sun, Ying [5 ]
Ioannidis, John P. A. [9 ]
Cuijpers, Pim [10 ]
Shrier, Ian [5 ,6 ,11 ]
Benedetti, Andrea [6 ,12 ,13 ]
Thombs, Brett D. [5 ,6 ,8 ,13 ,14 ,15 ,16 ]
机构
[1] Charite Univ Med Berlin, Ctr Internal Med & Dermatol, Dept Psychosomat Med, Berlin, Germany
[2] Free Univ Berlin, Berlin, Germany
[3] Humboldt Univ, Berlin, Germany
[4] Berlin Inst Hlth, Berlin, Germany
[5] Jewish Gen Hosp, Lady Davis Inst Med Res, Montreal, PQ, Canada
[6] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada
[7] Keele Univ, Sch Primary Community & Social Care, Ctr Prognosis Res, Keele, Staffs, England
[8] McGill Univ, Dept Psychol, Montreal, PQ, Canada
[9] Stanford Univ, Dept Med, Dept Epidemiol & Populat Hlth, Dept Biomed Data Sci,Dept Stat, Stanford, CA USA
[10] Vrije Univ, Amsterdam Publ Hlth Res Inst, Dept Clin Neuro & Dev Psychol, Amsterdam, Netherlands
[11] McGill Univ, Dept Family Med, Montreal, PQ, Canada
[12] McGill Univ, Hlth Ctr, Resp Epidemiol & Clin Res Unit, Montreal, PQ, Canada
[13] McGill Univ, Dept Med, Montreal, PQ, Canada
[14] McGill Univ, Dept Psychiat, Montreal, PQ, Canada
[15] McGill Univ, Dept Educ & Counselling Psychol, Montreal, PQ, Canada
[16] McGill Univ, Biomed Eth Unit, Montreal, PQ, Canada
基金
美国医疗保健研究与质量局; 加拿大健康研究院;
关键词
Confirmatory factor analysis; depression; Latent variable modeling; screening; PATIENT HEALTH QUESTIONNAIRE-9; MAJOR DEPRESSION; DIAGNOSTIC-TEST; CES-D; VALIDATION; SYMPTOMS; VALIDITY; ACCURACY; STANDARDIZATION; INSTRUMENT;
D O I
10.1017/S0033291721000131
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Background Previous research on the depression scale of the Patient Health Questionnaire (PHQ-9) has found that different latent factor models have maximized empirical measures of goodness-of-fit. The clinical relevance of these differences is unclear. We aimed to investigate whether depression screening accuracy may be improved by employing latent factor model-based scoring rather than sum scores. Methods We used an individual participant data meta-analysis (IPDMA) database compiled to assess the screening accuracy of the PHQ-9. We included studies that used the Structured Clinical Interview for DSM (SCID) as a reference standard and split those into calibration and validation datasets. In the calibration dataset, we estimated unidimensional, two-dimensional (separating cognitive/affective and somatic symptoms of depression), and bi-factor models, and the respective cut-offs to maximize combined sensitivity and specificity. In the validation dataset, we assessed the differences in (combined) sensitivity and specificity between the latent variable approaches and the optimal sum score (> 10), using bootstrapping to estimate 95% confidence intervals for the differences. Results The calibration dataset included 24 studies (4378 participants, 652 major depression cases); the validation dataset 17 studies (4252 participants, 568 cases). In the validation dataset, optimal cut-offs of the unidimensional, two-dimensional, and bi-factor models had higher sensitivity (by 0.036, 0.050, 0.049 points, respectively) but lower specificity (0.017, 0.026, 0.019, respectively) compared to the sum score cut-off of > 10. Conclusions In a comprehensive dataset of diagnostic studies, scoring using complex latent variable models do not improve screening accuracy of the PHQ-9 meaningfully as compared to the simple sum score approach.
引用
收藏
页码:3472 / 3483
页数:12
相关论文
共 50 条
  • [41] Predicting the treatment response of certolizumab for individual adult patients with rheumatoid arthritis: protocol for an individual participant data meta-analysis
    Luo, Yan
    Chalkou, Konstantina
    Yamada, Ryo
    Funada, Satoshi
    Salanti, Georgia
    Furukawa, Toshi A.
    SYSTEMATIC REVIEWS, 2020, 9 (01)
  • [42] Intensive behavioural interventions based on applied behaviour analysis for young children with autism: An international collaborative individual participant data meta-analysis
    Rodgers, Mark
    Simmonds, Mark
    Marshall, David
    Hodgson, Robert
    Stewart, Lesley A.
    Rai, Dheeraj
    Wright, Kath
    Ben-Itzchak, Esther
    Eikeseth, Svein
    Eldevik, Sigmund
    Kovshoff, Hanna
    Magiati, Iliana
    Osborne, Lisa A.
    Reed, Phil
    Vivanti, Giacomo
    Zachor, Ditza
    Couteur, Ann Le
    AUTISM, 2021, 25 (04) : 1137 - 1153
  • [43] Meta-Analysis Based Variable Selection for Gene Expression Data
    Li, Quefeng
    Wang, Sijian
    Huang, Chiang-Ching
    Yu, Menggang
    Shao, Jun
    BIOMETRICS, 2014, 70 (04) : 872 - 880
  • [44] Acceptance and commitment therapy for chronic pain: protocol of a systematic review and individual participant data meta-analysis
    Lin, Jiaxi
    Scott, Whitney
    Carpenter, Lewis
    Norton, Sam
    Domhardt, Matthias
    Baumeister, Harald
    McCracken, Lance M.
    SYSTEMATIC REVIEWS, 2019, 8 (1)
  • [45] Multiple imputation for harmonizing longitudinal non-commensurate measures in individual participant data meta-analysis
    Siddique, Juned
    Reiter, Jerome P.
    Brincks, Ahnalee
    Gibbons, Robert D.
    Crespi, Catherine M.
    Brown, C. Hendricks
    STATISTICS IN MEDICINE, 2015, 34 (26) : 3399 - 3414
  • [46] Multivariate meta-analysis of individual participant data helped externally validate the performance and implementation of a prediction model
    Snell, Kym I. E.
    Hua, Harry
    Debray, Thomas P. A.
    Ensor, Joie
    Look, Maxime P.
    Moons, Karel G. M.
    Riley, Richard D.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 69 : 40 - 50
  • [47] Initial severity of major depression and efficacy of new generation antidepressants: individual participant data meta-analysis
    Furukawa, T. A.
    Maruo, K.
    Noma, H.
    Tanaka, S.
    Imai, H.
    Shinohara, K.
    Ikeda, K.
    Yamawaki, S.
    Levine, S. Z.
    Goldberg, Y.
    Leucht, S.
    Cipriani, A.
    ACTA PSYCHIATRICA SCANDINAVICA, 2018, 137 (06) : 450 - 458
  • [48] Nonblanchable erythema for predicting pressure ulcer development: a systematic review with an individual participant data meta-analysis
    Shi, C.
    Bonnett, L. J.
    Dumville, J. C.
    Cullum, N.
    BRITISH JOURNAL OF DERMATOLOGY, 2020, 182 (02) : 278 - 286
  • [49] Is self-guided internet-based cognitive behavioural therapy (iCBT) harmful? An individual participant data meta-analysis
    Karyotaki, Eirini
    Kemmeren, Lise
    Riper, Heleen
    Twisk, Jos
    Hoogendoorn, Adriaan
    Kleiboer, Annet
    Mira, Adriana
    Mackinnon, Andrew
    Meyer, Bjoern
    Botella, Cristina
    Littlewood, Elizabeth
    Andersson, Gerhard
    Christensen, Helen
    Klein, Jan P.
    Schroeder, Johanna
    Breton-Lopez, Juana
    Scheider, Justine
    Griffiths, Kathy
    Farrer, Louise
    Huibers, Marcus J. H.
    Phillips, Rachel
    Gilbody, Simon
    Moritz, Steffen
    Berger, Thomas
    Pop, Victor
    Spek, Viola
    Cuijpers, Pim
    PSYCHOLOGICAL MEDICINE, 2018, 48 (15) : 2456 - 2466
  • [50] Imputation of systematically missing predictors in an individual participant data meta-analysis: a generalized approach using MICE
    Jolani, Shahab
    Debray, Thomas P. A.
    Koffijberg, Hendrik
    van Buuren, Stef
    Moons, Karel G. M.
    STATISTICS IN MEDICINE, 2015, 34 (11) : 1841 - 1863