Assessing Gaussian Process Regression and Permutationally Invariant Polynomial Approaches To Represent High-Dimensional Potential Energy Surfaces

被引:85
作者
Qu, Chen [1 ,2 ]
Yu, Qi [1 ,2 ]
Van Hoozen, Brian L., Jr. [1 ,2 ]
Bowman, Joel M. [1 ,2 ]
Vargas-Hernandez, Rodrigo A. [3 ]
机构
[1] Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA
[2] Emory Univ, Cherry L Emerson Ctr Sci Computat, Atlanta, GA 30322 USA
[3] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
INITIO; DYNAMICS; STATE;
D O I
10.1021/acs.jctc.8b00298
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mathematical representation of large data sets of electronic energies has seen substantial progress in the past 10 years. The so-called Permutationally Invariant Polynomial (PIP) representation is one established approach. This approach dates from 2003, when a global potential energy surface (PES) for CH5+ was reported using a basis of polynomials that are invariant with respect to the 120 permutations of the five equivalent H atoms. More recently, several approaches from "machine learning" have been applied to fit these large data sets. Gaussian Process (GP) regression is such an approach. Here, we consider the implementation of the (full) GP due to Krems and co-workers, with a modification that renders it permutationally invariant, which we denote by PIP-GP. This modification uses the approach of Guo and co-workers and later extended by Zhang and co-workers, to achieve permutational invariance for neural-network fits. The PIP, GP, and PIP-GP approaches are applied to four case studies for fitting data sets of electronic energies: H3O+, OCHCO+, and H2CO/cis-HCOH/trans-HCOH with the goal of assessing precision, accuracy in normal-mode analysis and barrier heights, and timings. We also report an application to (HCOOH), where the full PIP approach is possible but where the PIP-GP one is not feasible. However, by replicating data, which is feasible in this case, the GP approach is able to represent the data with precision comparable to that of the PIP approach. We examine these assessments for varying sizes of data sets in each case to determine the dependence of properties of the fits on the training data size. We conclude with some comments on the different aspects of computational effort of the PIP, GP, and PIP-GP approaches and also challenges these methods face for more "rugged" PESs, exemplified here by H2CO/cis-HCOH/trans-HCOH.
引用
收藏
页码:3381 / 3396
页数:16
相关论文
共 53 条
[1]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057
[2]   Machine-learning approach for one- and two-body corrections to density functional theory: Applications to molecular and condensed water [J].
Bartok, Albert P. ;
Gillan, Michael J. ;
Manby, Frederick R. ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 88 (05)
[3]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[4]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[5]   Constructing high-dimensional neural network potentials: A tutorial review [J].
Behler, Joerg .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1032-1050
[6]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[7]   ABINITIO CALCULATIONS OF ELECTRONIC AND VIBRATIONAL ENERGIES OF HCO AND HOC [J].
BOWMAN, JM ;
BITTMAN, JS ;
HARDING, LB .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (02) :911-921
[8]   High-dimensional ab initio potential energy surfaces for reaction dynamics calculations [J].
Bowman, Joel M. ;
Czako, Gabor ;
Fu, Bina .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (18) :8094-8111
[9]   Permutationally invariant potential energy surfaces in high dimensionality [J].
Braams, Bastiaan J. ;
Bowman, Joel M. .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2009, 28 (04) :577-606
[10]   Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface [J].
Brown, A ;
Braams, BJ ;
Christoffel, K ;
Jin, Z ;
Bowman, JM .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (17) :8790-8793