Dark energy as a critical phenomenon: a hint from Hubble tension

被引:26
作者
Banihashemi, Abdolali [1 ]
Khosravi, Nima [1 ]
Shafieloo, Arman [2 ,3 ]
机构
[1] Shahid Beheshti Univ, Dept Phys, Tehran 1983969411, Iran
[2] Korea Astron & Space Sci Inst, Daejeon 34055, South Korea
[3] Univ Sci & Technol, Daejeon 34113, South Korea
基金
美国国家科学基金会;
关键词
dark energy theory; modified gravity; INDEPENDENT DETERMINATION; CEPHEID STANDARDS; CONSTANT; CONSTRAINTS; SAMPLE; LIGHT; MODEL;
D O I
10.1088/1475-7516/2021/06/003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a dark energy model based on the physics of critical phenomena which is consistent with both the Planck's CMB and the Riess et al.'s local Hubble measurements. In this model the dark energy density behaves like the order parameter of a generic system which undergoes a phase transition. This means the dark energy is an emergent phenomenon and we named it critically emergent dark energy model, CEDE. In CEDE, dark energy emerges at a transition redshift, z(c), corresponding to the critical temperature in critical phenomena. Combining the Planck CMB data and local measurement of the Hubble constant from Riess et al. (2019) we find statistically significant support for this transition with respect to the case of very early transition that represents effectively the cosmological constant. This is understandable since CEDE model naturally prefers larger values of Hubble constant consistent with local measurements. Since CEDE prefers a non-trivial transition when we consider both high redshift Planck CMB data and local Hubble constant measurements, we conclude that H-0 tension may be a hint for the substructure of the dark energy as a wellstudied properties of critical phenomena. However if we add BAO and SNe datasets then CEDE prefers lower value for H-0. This means the H-0 tension still exist but it is milder than Lambda CDM's.
引用
收藏
页数:15
相关论文
共 82 条
[1]   QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM [J].
Addison, G. E. ;
Huang, Y. ;
Watts, D. J. ;
Bennett, C. L. ;
Halpern, M. ;
Hinshaw, G. ;
Weiland, J. L. .
ASTROPHYSICAL JOURNAL, 2016, 818 (02)
[2]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[3]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[4]   IceCube neutrinos, decaying dark matter, and the Hubble constant [J].
Anchordoqui, Luis A. ;
Barger, Vernon ;
Goldberg, Haim ;
Huang, Xing ;
Marfatia, Danny ;
da Silva, Luiz H. M. ;
Weiler, Thomas J. .
PHYSICAL REVIEW D, 2015, 92 (06)
[5]   The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples [J].
Anderson, Lauren ;
Aubourg, Eric ;
Bailey, Stephen ;
Beutler, Florian ;
Bhardwaj, Vaishali ;
Blanton, Michael ;
Bolton, Adam S. ;
Brinkmann, J. ;
Brownstein, Joel R. ;
Burden, Angela ;
Chuang, Chia-Hsun ;
Cuesta, Antonio J. ;
Dawson, Kyle S. ;
Eisenstein, Daniel J. ;
Escoffier, Stephanie ;
Gunn, James E. ;
Guo, Hong ;
Ho, Shirley ;
Honscheid, Klaus ;
Howlett, Cullan ;
Kirkby, David ;
Lupton, Robert H. ;
Manera, Marc ;
Maraston, Claudia ;
McBride, Cameron K. ;
Mena, Olga ;
Montesano, Francesco ;
Nichol, Robert C. ;
Nuza, Sebastian E. ;
Olmstead, Matthew D. ;
Padmanabhan, Nikhil ;
Palanque-Delabrouille, Nathalie ;
Parejko, John ;
Percival, Will J. ;
Petitjean, Patrick ;
Prada, Francisco ;
Price-Whelan, Adrian M. ;
Reid, Beth ;
Roe, Natalie A. ;
Ross, Ashley J. ;
Ross, Nicholas P. ;
Sabiu, Cristiano G. ;
Saito, Shun ;
Samushia, Lado ;
Sanchez, Ariel G. ;
Schlegel, David J. ;
Schneider, Donald P. ;
Scoccola, Claudia G. ;
Seo, Hee-Jong ;
Skibba, Ramin A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 441 (01) :24-62
[6]   Ginzburg-Landau theory of dark energy: A framework to study both temporal and spatial cosmological tensions simultaneously [J].
Banihashemi, Abdolali ;
Khosravi, Nima ;
Shirazi, Amir H. .
PHYSICAL REVIEW D, 2019, 99 (08)
[7]  
Ben-Dayan I., ARXIV201002998
[8]  
Benaoum H. B., ARXIV200809098
[9]   Can late dark energy transitions raise the Hubble constant? [J].
Benevento, Giampaolo ;
Hu, Wayne ;
Raveri, Marco .
PHYSICAL REVIEW D, 2020, 101 (10)
[10]   Reconciling Planck results with low redshift astronomical measurements [J].
Berezhiani, Zurab ;
Dolgov, A. D. ;
Tkachev, I. I. .
PHYSICAL REVIEW D, 2015, 92 (06)