Bezout equations over bivariate polynomial matrices related by an entire function

被引:1
作者
Suyama, Koichi [1 ]
Kosugi, Nobuko [2 ]
机构
[1] Tokyo Univ Marine Sci & Technol, Dept Maritime Syst Engn, Tokyo, Japan
[2] Chuo Univ, Fac Econ, Tokyo 112, Japan
关键词
15A24; 13P05; 13P25; entire function; Bezout equation; bivariate polynomial matrix; primeness; DELAY SYSTEMS;
D O I
10.1080/03081087.2014.922968
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study addresses Bezout equations over bivariate polynomial matrices, where the relationship between two variables is described by a real entire function. This paper proposes a solution method that makes optimal use of minor primeness to reduce such Bezout equations to simple equations over univariate scalar polynomials. The proposed solution method requires only matrix calculations, thus making it very useful, especially in the absence of modern computer algebra systems.
引用
收藏
页码:1138 / 1153
页数:16
相关论文
共 8 条
  • [1] Greuel G.-M., 2008, SINGULAR INTRO COMMU
  • [2] Helmer O., 1940, DUKE MATH J, V6, P345
  • [3] PROPER STABLE BEZOUT FACTORIZATIONS AND FEEDBACK-CONTROL OF LINEAR TIME-DELAY SYSTEMS
    KAMEN, EW
    KHARGONEKAR, PP
    TANNENBAUM, A
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (03) : 837 - 857
  • [4] A new method for solving Bezout equations over 2-D polynomial matrices from delay systems
    Kosugi, Nobuko
    Suyama, Koichi
    [J]. SYSTEMS & CONTROL LETTERS, 2012, 61 (06) : 723 - 729
  • [5] Finite spectrum assignment of systems with general delays
    Kosugi, Nobuko
    Suyama, Koichi
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (12) : 1983 - 1995
  • [6] NEW RESULTS IN 2-D SYSTEMS-THEORY .1. 2-D POLYNOMIAL MATRICES, FACTORIZATION, AND CO-PRIMENESS
    MORF, M
    LEVY, BC
    KUNG, SY
    [J]. PROCEEDINGS OF THE IEEE, 1977, 65 (06) : 861 - 872
  • [7] NOTES ON N-DIMENSIONAL SYSTEM THEORY
    YOULA, DC
    GNAVI, G
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1979, 26 (02): : 105 - 111
  • [8] Zerz E., 2000, TOPICS MULTIDIMENSIO