Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering

被引:42
|
作者
Chen, Li [1 ,2 ]
Wu, Zhenxu [1 ,2 ]
Zhou, Yulai [1 ]
Li, Linlong [2 ,3 ]
Wang, Yu [2 ,3 ]
Wang, Zongliang [2 ,3 ]
Chen, Yue [1 ]
Zhang, Peibiao [2 ,3 ]
机构
[1] Jilin Univ, Sch Pharmaceut Sci, Changchun 130021, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, Key Lab Polymer Ecomat, Changchun 130022, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
biomimetic; bone tissue engineering; collagen; composite scaffold; hydroxyapatite; IN-VITRO; HYDROXYAPATITE SCAFFOLDS; MECHANICAL-PROPERTIES; OSTEOCHONDRAL TISSUE; STEM-CELLS; COLLAGEN; REPAIR; MINERALIZATION; OSTEOGENESIS; DELIVERY;
D O I
10.1002/app.45271
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bone defect and osteochondral injury frequently occur due to diseases or traumatism and bring a crucial challenge in orthopedics. The hybrid scaffold has shown promise as a potential strategy for the treatment of such defects. In this study, a novel biomimetic porous collagen (Col)/hydroxyapatite (HA) scaffold was fabricated through assembling layers of Col containing gradual amount of HA under the assistance of iterative layering freeze-drying process. The scaffold presents a double gradient of highly interconnected porosity and HA content from top to bottom, mimicking the inherent physiological structure of bone. Owing to the biomimetic structure and component, significant increase of cell proliferation, alkaline phosphatase activity, and osteogenic differentiation in vitro was observed, illustrating potential application of the excellent Col/HA scaffold as a promising strategy for bone tissue engineering. (c) 2017 Wiley Periodicals, Inc.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Biomimetic Graphene Oxide-Xanthan Gum-Hydroxyapatite Composite Scaffold for Bone Tissue Engineering
    M. Vanpeene
    R. Rajesh
    Y. Dominic Ravichandran
    Yung-Chih Kuo
    Gamada Gure
    Chemistry Africa, 2023, 6 : 145 - 152
  • [32] Biomimetic Multilayer Polyurethane Porous Scaffold for Cartilage Tissue Engineering
    Long, Chen
    Gang, Wu
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 : 1 - 4
  • [33] Biomimetic multilayer polyurethane porous scaffold for cartilage tissue engineering
    Chen, Long
    Wu, Gang
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2014, 43 : 1 - 4
  • [34] Biomimetic Collagen Nanofibrous Materials for Bone Tissue Engineering
    Zheng, Wenfu
    Zhang, Wei
    Jiang, Xingyu
    ADVANCED ENGINEERING MATERIALS, 2010, 12 (09) : B451 - B466
  • [35] Functionalization of biomimetic mineralized collagen for bone tissue engineering
    Zhu, Xiujie
    Wang, Chenyu
    Bai, Haotian
    Zhang, Jiaxin
    Wang, Zhonghan
    Li, Zuhao
    Zhao, Xin
    Wang, Jincheng
    Liu, He
    MATERIALS TODAY BIO, 2023, 20
  • [36] Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering
    Dong, Zhihong
    Li, Yubao
    Zou, Qin
    APPLIED SURFACE SCIENCE, 2009, 255 (12) : 6087 - 6091
  • [37] Fabrication of Porous Biologic Hydroxyapatite Scaffold Reinforced with Polymer Coating for Bone Tissue Engineering Candidate
    Sabree, Israa K.
    Abd Aladel, Batool
    IRANIAN JOURNAL OF MATERIALS SCIENCE AND ENGINEERING, 2023, 20 (03) : 1 - 10
  • [38] Porous structure of bioceramics carbonated hydroxyapatite-based honeycomb scaffold for bone tissue engineering
    Sari, Mona
    Hening, Puspa
    Chotimah
    Ana, Ika Dewi
    Yusuf, Yusril
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [39] A three-dimensional porous scaffold of biodegradable synthetic polymers and porous hydroxyapatite beads for bone tissue engineering
    Ushida, T
    Chen, GP
    Tamaki, T
    Umezu, Y
    Tateishi, T
    BIOCERAMICS, 2000, 192-1 : 519 - 522
  • [40] Biomimetic Synthesis of Collagen/Nano-Hydroxyapitate Scaffold for Tissue Engineering
    Liu, Chao-zong
    JOURNAL OF BIONIC ENGINEERING, 2008, 5 (Suppl 1): : 1 - 8