Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms

被引:37
|
作者
Li, Mingna [1 ]
Zhang, Kun [1 ]
Sun, Yan [1 ]
Cui, Huiting [1 ]
Cao, Shihao [1 ]
Yan, Li [1 ]
Xu, Mengxin [1 ]
机构
[1] China Agr Univ, Coll Anim Sci & Technol, Grassland Sci Dept, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Carex rigescens; Antioxidant; Ca2+signaling; Phytohormone response signaling; Phenylpropanoid; Salt-tolerance mechanism; ACID O-METHYLTRANSFERASE; COENZYME-A; 3-O-METHYLTRANSFERASE; ABIOTIC STRESS; MOLECULAR-MECHANISMS; SIGNAL-TRANSDUCTION; MEMBRANE-TRANSPORT; N-ACETYLSEROTONIN; ROS HOMEOSTASIS; PLANT-GROWTH; BIOSYNTHESIS;
D O I
10.1016/j.jplph.2018.07.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt stress is a major abiotic stress threatening plant growth and development throughout the world. In this study, we investigated the salt stress adaptation mechanism of Carex rigescens (Franch.) V. Krecz, a stress-tolerant turfgrass species with a wide distribution in northern China. Specifically, we analyzed the growth, physiology, and transcript expression patterns of two C. rigescens genotypes (Huanghua and Lvping No.1) exposed to salt stress. Results show that Huanghua demonstrated better growth performance, and higher turf quality (TQ), photochemical efficiency (Fv/Fm), relative water content (RWC), proline content, and lower relative electrolyte leakage (REL) during seven days of salt treatment compared to Lvping No.1, suggesting that Huanghua is more salt tolerant. Significant differences in reactive oxygen species (ROS), Malondialdehyde (MDA), melatonin, nonenzymatic antioxidants, lignin, and flavonoid content, as well as in antioxidant activity between Huanghua and Lvping No.1 after salt stress indicate the diverse regulation involved in salt stress adaptation in C. rigescens. These results, combined with those of the transcript expression pattern of involved genes, suggest that Huanghua is more active and efficient in ROS scavenging, Ca2+ binding, and its phytohormone response than Lvping No.1. Meanwhile, Lvping No.1 showed relatively higher phenylpropanoid synthesis, using flavonoid and lignin as supplements for the inadequate ROS-scavenging capacity and the development of vascular tissues, respectively. These performances illustrate the differences between the two genotypes in multifaceted and sophisticated actions contributing to the tolerance mechanism of salt stress in C. rigescens. In addition, the significantly higher content of melatonin and the rapid induction of Caffeic acid O-methyltransferase (COMT) highlight the role of melatonin in the salt stress response in Huanghua. The results of our study expand existing knowledge of the complexity of the salt stress response involving the antioxidant system, Ca2+ signaling, phytohormone response signaling, and phenylpropanoid pathways. It also provides a basis for further study of the underlying mechanism of salt tolerance in C. rigescens and other plant species.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 50 条
  • [1] Selection of sunflower genotypes for salt stress and mechanisms of salt tolerance in contrasting genotypes
    de Azevedo Neto, Andre Dias
    Azevedo Barros Mota, Katia Nubia
    Conceicao Silva, Petterson Costa
    Watanabe Cova, Alide Mitsue
    Ribas, Rogerio Ferreira
    Gheyi, Hans Raj
    CIENCIA E AGROTECNOLOGIA, 2020, 44
  • [2] iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens
    Li, Mingna
    Zhang, Kun
    Long, Ruicai
    Sun, Yan
    Kang, Junmei
    Zhang, Tiejun
    Cao, Shihao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2017, 143 : 99 - 114
  • [3] Comparative time-course transcriptome analysis of two contrasting alfalfa (Medicago sativa L.) genotypes reveals tolerance mechanisms to salt stress
    Ma, Dongmei
    Cai, Jinjun
    Ma, Qiaoli
    Wang, Wenjing
    Zhao, Lijuan
    Li, Jiawen
    Su, Lina
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum
    Yang, Zhen
    Li, Jin-Lu
    Liu, Lu-Ning
    Xie, Qi
    Sui, Na
    FRONTIERS IN PLANT SCIENCE, 2020, 10
  • [5] Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress
    Zhang, Yujuan
    Wei, Mengyuan
    Liu, Aili
    Zhou, Rong
    Li, Donghua
    Dossa, Komivi
    Wang, Linhai
    Zhang, Yanxin
    Gong, Huihui
    Zhang, Xiurong
    You, Jun
    JOURNAL OF PROTEOMICS, 2019, 201 : 73 - 83
  • [6] Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance
    Ouertani, Rim Nefissi
    Arasappan, Dhivya
    Ruhlman, Tracey A.
    Ben Chikha, Mariem
    Abid, Ghassen
    Mejri, Samiha
    Ghorbel, Abdelwahed
    Jansen, Robert K.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [7] Antioxidant response and Lea genes expression under salt stress and combined salt plus water stress in two wheat cultivars contrasting in drought tolerance
    Bhagi, Priyanka
    Zhawar, Vikramjit Kaur
    Gupta, Anil Kumar
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 2013, 51 (09) : 746 - 757
  • [8] Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes
    Peng, Zhen
    He, Shoupu
    Gong, Wenfang
    Sun, Junling
    Pan, Zhaoe
    Xu, Feifei
    Lu, Yanli
    Du, Xiongming
    BMC GENOMICS, 2014, 15
  • [9] RAPD Markers Associated with Salt Tolerance in Soybean Genotypes Under Salt Stress
    Khan, Faheema
    Hakeem, Khalid Rehman
    Siddiqi, Tariq O.
    Ahmad, Altaf
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2013, 170 (02) : 257 - 272
  • [10] Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis
    Yousuf, Peerzada Yasir
    Ahmad, Altaf
    Aref, Ibrahim M.
    Ozturk, Munir
    Hemant
    Ganie, Arshid Hussain
    Iqbal, Muhammad
    PROTOPLASMA, 2016, 253 (06) : 1565 - 1575