Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms

被引:37
|
作者
Li, Mingna [1 ]
Zhang, Kun [1 ]
Sun, Yan [1 ]
Cui, Huiting [1 ]
Cao, Shihao [1 ]
Yan, Li [1 ]
Xu, Mengxin [1 ]
机构
[1] China Agr Univ, Coll Anim Sci & Technol, Grassland Sci Dept, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Carex rigescens; Antioxidant; Ca2+signaling; Phytohormone response signaling; Phenylpropanoid; Salt-tolerance mechanism; ACID O-METHYLTRANSFERASE; COENZYME-A; 3-O-METHYLTRANSFERASE; ABIOTIC STRESS; MOLECULAR-MECHANISMS; SIGNAL-TRANSDUCTION; MEMBRANE-TRANSPORT; N-ACETYLSEROTONIN; ROS HOMEOSTASIS; PLANT-GROWTH; BIOSYNTHESIS;
D O I
10.1016/j.jplph.2018.07.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt stress is a major abiotic stress threatening plant growth and development throughout the world. In this study, we investigated the salt stress adaptation mechanism of Carex rigescens (Franch.) V. Krecz, a stress-tolerant turfgrass species with a wide distribution in northern China. Specifically, we analyzed the growth, physiology, and transcript expression patterns of two C. rigescens genotypes (Huanghua and Lvping No.1) exposed to salt stress. Results show that Huanghua demonstrated better growth performance, and higher turf quality (TQ), photochemical efficiency (Fv/Fm), relative water content (RWC), proline content, and lower relative electrolyte leakage (REL) during seven days of salt treatment compared to Lvping No.1, suggesting that Huanghua is more salt tolerant. Significant differences in reactive oxygen species (ROS), Malondialdehyde (MDA), melatonin, nonenzymatic antioxidants, lignin, and flavonoid content, as well as in antioxidant activity between Huanghua and Lvping No.1 after salt stress indicate the diverse regulation involved in salt stress adaptation in C. rigescens. These results, combined with those of the transcript expression pattern of involved genes, suggest that Huanghua is more active and efficient in ROS scavenging, Ca2+ binding, and its phytohormone response than Lvping No.1. Meanwhile, Lvping No.1 showed relatively higher phenylpropanoid synthesis, using flavonoid and lignin as supplements for the inadequate ROS-scavenging capacity and the development of vascular tissues, respectively. These performances illustrate the differences between the two genotypes in multifaceted and sophisticated actions contributing to the tolerance mechanism of salt stress in C. rigescens. In addition, the significantly higher content of melatonin and the rapid induction of Caffeic acid O-methyltransferase (COMT) highlight the role of melatonin in the salt stress response in Huanghua. The results of our study expand existing knowledge of the complexity of the salt stress response involving the antioxidant system, Ca2+ signaling, phytohormone response signaling, and phenylpropanoid pathways. It also provides a basis for further study of the underlying mechanism of salt tolerance in C. rigescens and other plant species.
引用
收藏
页码:77 / 88
页数:12
相关论文
共 50 条
  • [1] Selection of sunflower genotypes for salt stress and mechanisms of salt tolerance in contrasting genotypes
    de Azevedo Neto, Andre Dias
    Azevedo Barros Mota, Katia Nubia
    Conceicao Silva, Petterson Costa
    Watanabe Cova, Alide Mitsue
    Ribas, Rogerio Ferreira
    Gheyi, Hans Raj
    CIENCIA E AGROTECNOLOGIA, 2020, 44
  • [2] Comparative phenotypical and transcriptional analysis of two contrasting rice genotypes under salt stress
    Ye, Chan-juan
    Chen, Ke
    Zhou, Xin-qiao
    Shan, Ze-lin
    Chen, Da-gang
    Guo, Jie
    Liu, Juan
    Hu, Hai-Fei
    Chen, Hao
    Chen, You-ding
    Chen, Guo-rong
    Liu, Chuan-guang
    PLANT GROWTH REGULATION, 2024, 104 (03) : 1417 - 1433
  • [3] Comparative Transcriptional Analysis of Two Contrasting Rice Genotypes in Response to Salt Stress
    Ye, Xiaoxue
    Tie, Weiwei
    Xu, Jianlong
    Ding, Zehong
    Hu, Wei
    AGRONOMY-BASEL, 2022, 12 (05):
  • [4] Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa
    Rakesh Kaundal
    Naveen Duhan
    Biswa R. Acharya
    Manju V. Pudussery
    Jorge F. S. Ferreira
    Donald L. Suarez
    Devinder Sandhu
    Scientific Reports, 11
  • [5] Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa
    Kaundal, Rakesh
    Duhan, Naveen
    Acharya, Biswa R.
    Pudussery, Manju V.
    Ferreira, Jorge F. S.
    Suarez, Donald L.
    Sandhu, Devinder
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Transcriptome analysis reveals the molecular mechanisms underlying the enhancement of salt-tolerance in Melia azedarach under salinity stress
    Li, Na
    Shao, Tianyun
    Xu, Li
    Long, Xiaohua
    Rengel, Zed
    Zhang, Yu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Comparative Physiological and Transcriptomic Analyses of Two Contrasting Pepper Genotypes under Salt Stress Reveal Complex Salt Tolerance Mechanisms in Seedlings
    Zhang, Tao
    Sun, Kaile
    Chang, Xiaoke
    Ouyang, Zhaopeng
    Meng, Geng
    Han, Yanan
    Shen, Shunshan
    Yao, Qiuju
    Piao, Fengzhi
    Wang, Yong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [8] Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress
    Bin Wu
    Yarvaan Munkhtuya
    Jianjiang Li
    Yani Hu
    Qian Zhang
    Zongwen Zhang
    Scientific Reports, 8
  • [9] Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress
    Wu, Bin
    Munkhtuya, Yarvaan
    Li, Jianjiang
    Hu, Yani
    Zhang, Qian
    Zhang, Zongwen
    SCIENTIFIC REPORTS, 2018, 8
  • [10] Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet
    Geng, Gui
    Lv, Chunhua
    Stevanato, Piergiorgio
    Li, Renren
    Liu, Hui
    Yu, Lihua
    Wang, Yuguang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (23)