Jacquet-Langlands and unitarisability

被引:29
作者
Badulescu, Alexandru Ioan [1 ]
机构
[1] Univ Poitiers, UFR Sci SP2MI, Dept Math, F-86962 Futuroscope, France
关键词
reductive group; local field; global field; representation;
D O I
10.1017/S1474748007000035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a local Jacquet-Langlands correspondence for all smooth irreducible representations. This correspondence is characterized by the fact that it respects the classical Jacquet-Langlands correspondence and it commutes with the parabolic induction functor. It has good behavior with respect to the Jacquet's functor and the involution of Aubert-Schneider-Stuhler. Using this correspondence, we prove some particular cases of the global Jacquet-Langlands correspondence and we deduce that a certain class of representations of an inner form of GL(n) over a p-adic field are unitarizable. This is the first step towards the proof of Conjecture Ul of Tadic.
引用
收藏
页码:349 / 379
页数:31
相关论文
共 20 条
[1]  
[Anonymous], 1988, J AM MATH SOC
[2]  
Arthur J., 1989, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula (Annals of Mathematics Studies), V120
[4]  
Badulescu A. I., 2004, Glasnik Matematicki, Serija III, V39, P49, DOI 10.3336/gm.39.1.05
[5]   A theorum of finitude in the automorphic spectrum for the interior forms of GLn on a global body [J].
Badulescu, AI .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :651-657
[6]   An irreductibility result in a non-void characteristic [J].
Badulescu, AI .
TOHOKU MATHEMATICAL JOURNAL, 2004, 56 (04) :583-592
[7]   The Jacquet-Langlands correspondence in non-Zero characteristic [J].
Badulescu, AI .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2002, 35 (05) :695-747
[8]  
BERNSTEIN JN, 1983, LIE GROUPS REPRESENT, V2
[9]  
CLOZEL L, 1984, B SOC MATH FR, V112, P39
[10]  
DELIGNE P, 1984, REPRESENTATIONS ALGE