Detecting and locating patterns in time series using machine learning

被引:7
|
作者
Janka, Dennis [1 ]
Lenders, Felix [1 ]
Wang, Shiyu [1 ,2 ]
Cohen, Andrew [1 ]
Li, Nuo [1 ]
机构
[1] ABB AG, Corp Res Germany, Wallstadter Str 59, D-68526 Ladenburg, Germany
[2] Karlsruhe Inst Technol, D-76133 Karlsruhe, Germany
关键词
Pattern recognition; Machine learning; Time-series classification; Industrial data analytics; Metals processing; Neural networks;
D O I
10.1016/j.conengprac.2019.104169
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A method is presented to detect and locate user-defined patterns in time series data. The method is based on decomposing time series into a sequence of fixed-length snapshots on which a classifier is applied. Snapshot classification results determine the exact position of the pattern. One advantage of this approach is that it can be applied to any process-specific pattern, e.g., spiking patterns, under- or overshoots, or (time-lagged) correlations. We demonstrate the efficacy of the approach by means of an example from steel production, namely a cold-rolling mill process. We detect two patterns: underswings and time-lagged spike repetition in multivariate series.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A new algorithm for time series prediction using machine learning models
    Yeturu Jahnavi
    Poongothai Elango
    S. P. Raja
    Javier Parra Fuente
    Elena Verdú
    Evolutionary Intelligence, 2023, 16 : 1449 - 1460
  • [22] Jump detection in financial time series using machine learning algorithms
    Jay F. K. Au Yeung
    Zi-kai Wei
    Kit Yan Chan
    Henry Y. K. Lau
    Ka-Fai Cedric Yiu
    Soft Computing, 2020, 24 : 1789 - 1801
  • [23] Multivariate Time Series Evapotranspiration Forecasting using Machine Learning Techniques
    Liyew, Chalachew Muluken
    Meo, Rosa
    Di Nardo, Elvira
    Ferraris, Stefano
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 377 - 380
  • [24] Water Demand Forecasting Using Machine Learning and Time Series Algorithms
    Ibrahim, Tarek
    Omar, Yasser
    Maghraby, Fahima A.
    2020 INTERNATIONAL CONFERENCE ON EMERGING SMART COMPUTING AND INFORMATICS (ESCI), 2020, : 325 - 329
  • [25] Forecasting insect abundance using time series embedding and machine learning
    Palma, Gabriel R.
    Mello, Rodrigo F.
    Godoy, Wesley A. C.
    Engel, Eduardo
    Lau, Douglas
    Markham, Charles
    Moral, Rafael A.
    ECOLOGICAL INFORMATICS, 2025, 85
  • [26] Predicting Benzene Concentration Using Machine Learning and Time Series Algorithms
    Menendez Garcia, Luis Alfonso
    Sanchez Lasheras, Fernando
    Garcia Nieto, Paulino Jose
    Alvarez de Prado, Laura
    Bernardo Sanchez, Antonio
    MATHEMATICS, 2020, 8 (12) : 1 - 21
  • [27] Time Series Data Modeling Using Advanced Machine Learning and AutoML
    Alsharef, Ahmad
    Sonia
    Kumar, Karan
    Iwendi, Celestine
    SUSTAINABILITY, 2022, 14 (22)
  • [28] Monkeypox Outbreak Analysis: An Extensive Study Using Machine Learning Models and Time Series Analysis
    Priyadarshini, Ishaani
    Mohanty, Pinaki
    Kumar, Raghvendra
    Taniar, David
    COMPUTERS, 2023, 12 (02)
  • [29] Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning
    Formisano, Elia
    De Martino, Federico
    Valente, Giancarlo
    MAGNETIC RESONANCE IMAGING, 2008, 26 (07) : 921 - 934
  • [30] Detecting Anomalies in Time Series Using Kernel Density Approaches
    Frehner, Robin
    Wu, Kesheng
    Sim, Alexander
    Kim, Jinoh
    Stockinger, Kurt
    IEEE ACCESS, 2024, 12 : 33420 - 33439