On the law of large numbers for (geometrically) ergodic Markov chains

被引:23
作者
Tolver Jensen, Soren [1 ]
Rahbek, Anders [1 ]
机构
[1] Univ Copenhagen, Inst Math Sci, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1017/S0266466607070326
中图分类号
F [经济];
学科分类号
02 ;
摘要
For use in asymptotic analysis of nonlinear time series models, we show that with (X-t, t >= 0) a (geometrically) ergodic Markov chain, the general version of the strong law of large numbers applies. That is, the average (1/T) Sigma(T-1)(t=O) phi(X-t,Xt+1,...) converges almost surely to the expectation of phi(XtXt+1,....) irrespective of the choice of initial distribution of, or value of, X-0. In the existing literature, the less general form (1/T) Sigma(T-1)(t=0) phi(X-t) has been studied.
引用
收藏
页码:761 / 766
页数:6
相关论文
共 23 条
[11]  
KRISTENSEN D, 2005, TIME SERIES MODELS
[12]  
KRISTENSEN D, 2005, ASYMPTOTICS QMLE GEN
[13]   ASYMPTOTIC THEORY FOR THE GARCH(1,1) QUASI-MAXIMUM LIKELIHOOD ESTIMATOR [J].
LEE, SW ;
HANSEN, BE .
ECONOMETRIC THEORY, 1994, 10 (01) :29-52
[14]  
LIEBSCHER E, 2005, J TIME SER ANAL, V5, P17
[15]   Asymptotic theory for a vector ARMA-GARCH model [J].
Ling, SQ ;
McAleer, M .
ECONOMETRIC THEORY, 2003, 19 (02) :280-310
[16]   NONPARAMETRIC-ESTIMATION AND IDENTIFICATION OF NONLINEAR ARCH TIME-SERIES - STRONG-CONVERGENCE AND ASYMPTOTIC NORMALITY - STRONG-CONVERGENCE AND ASYMPTOTIC NORMALITY [J].
MASRY, E ;
TJOSTHEIM, D .
ECONOMETRIC THEORY, 1995, 11 (02) :258-289
[17]   MAXIMAL INEQUALITY AND DEPENDENT STRONG LAWS [J].
MCLEISH, DL .
ANNALS OF PROBABILITY, 1975, 3 (05) :829-839
[18]  
MEITZ M, 2004, WORKING PAPERS SERIE
[19]  
Meyn SP, 1993, Stochastic Stability of Markov chains
[20]   Cointegrating smooth transition regressions [J].
Saikkonen, P ;
Choi, I .
ECONOMETRIC THEORY, 2004, 20 (02) :301-340