Magnetic Doping and Kondo Effect in Bi2Se3 Nanoribbons

被引:114
作者
Cha, Judy J. [1 ]
Williams, James R. [2 ]
Kong, Desheng [1 ]
Meister, Stefan [1 ]
Peng, Hailin [1 ]
Bestwick, Andrew J. [2 ]
Gallagher, Patrick [2 ]
Goldhaber-Gordon, David [2 ]
Cui, Yi [1 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Topological insulator; Kondo effect; magnetic doping; nanoribbon; bismuth selenide; HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; TOPOLOGICAL-INSULATOR; NANOWIRES; TRANSPORT; PHASE; SURFACE; SYSTEM; BI2TE3;
D O I
10.1021/nl100146n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple surface band structure and a large bulk band gap have allowed Bi2SC3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surface-to-volume ratio, which enhances effects from the surface states recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking Lime-reversal symmetry. Here, we present synthesis of magnetically doped Bi2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than similar to 2%, low-temperature transport, measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens Up exciting opportunities for spintronics.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 31 条
  • [1] High-resolution detection of Au catalyst atoms in Si nanowires
    Allen, Jonathan E.
    Hemesath, Eric R.
    Perea, Daniel E.
    Lensch-Falk, Jessica L.
    Li, Z. Y.
    Yin, Feng
    Gass, Mhairi H.
    Wang, Peng
    Bleloch, Andrew L.
    Palmer, Richard E.
    Lauhon, Lincoln J.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (03) : 168 - 173
  • [2] Quantum spin Hall effect and topological phase transition in HgTe quantum wells
    Bernevig, B. Andrei
    Hughes, Taylor L.
    Zhang, Shou-Cheng
    [J]. SCIENCE, 2006, 314 (5806) : 1757 - 1761
  • [3] Quantum spin hall effect
    Bernevig, BA
    Zhang, SC
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (10)
  • [4] Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3
    Chen, Y. L.
    Analytis, J. G.
    Chu, J. -H.
    Liu, Z. K.
    Mo, S. -K.
    Qi, X. L.
    Zhang, H. J.
    Lu, D. H.
    Dai, X.
    Fang, Z.
    Zhang, S. C.
    Fisher, I. R.
    Hussain, Z.
    Shen, Z. -X.
    [J]. SCIENCE, 2009, 325 (5937) : 178 - 181
  • [5] Functional nanoscale electronic devices assembled using silicon nanowire building blocks
    Cui, Y
    Lieber, CM
    [J]. SCIENCE, 2001, 291 (5505) : 851 - 853
  • [6] Doping and electrical transport in silicon nanowires
    Cui, Y
    Duan, XF
    Hu, JT
    Lieber, CM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22): : 5213 - 5216
  • [7] Tunable anomalous Hall effect in a nonferromagnetic system
    Cumings, John
    Moore, L. S.
    Chou, H. T.
    Ku, K. C.
    Xiang, G.
    Crooker, S. A.
    Samarth, N.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (19)
  • [8] Topological insulators in three dimensions
    Fu, Liang
    Kane, C. L.
    Mele, E. J.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (10)
  • [9] HIKAMI S, 1980, PROG THEOR PHYS, V63, P707, DOI 10.1143/PTP.63.707
  • [10] p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications
    Hor, Y. S.
    Richardella, A.
    Roushan, P.
    Xia, Y.
    Checkelsky, J. G.
    Yazdani, A.
    Hasan, M. Z.
    Ong, N. P.
    Cava, R. J.
    [J]. PHYSICAL REVIEW B, 2009, 79 (19)