On the converse of Anderson's theorem

被引:1
作者
Blanco, A.
Turnsek, A. [1 ]
机构
[1] Queens Univ Belfast, Dept Pure Matrh, Belfast N17 1NN, Antrim, North Ireland
[2] Univ Ljubljana, Fac Mech Engn, Ljubljana 1000, Slovenia
关键词
Anderson's inequality; Fuglede-Putnam; Hilbert space; James orthogonality;
D O I
10.1016/j.laa.2007.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the converse of Anderson's theorem on the range-kernel orthogonality of a derivation. In particular, we show that a pair of bounded linear operators on a Hilbert space satisfies the Fuglede-Putnam theorem relative to the ideal of compact operators if and only if it satisfies Anderson's inequality relative to the same ideal. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 389
页数:6
相关论文
共 50 条
[41]   A REPRESENTATION THEOREM FOR NORMS IN HILBERT SPACE [J].
Shih, Mau-Hsiang ;
Takahashi, Wataru .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (08) :2137-2139
[42]   The Plancherel Theorem for invariant Hilbert spaces [J].
Joachim Hilgert ;
Bernhard Krötz .
Mathematische Zeitschrift, 2001, 237 :61-83
[43]   Plancherel theorem for vector valued functions and Boehmians [J].
Karunakaran, V ;
Thilaga, VB .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (04) :1321-1342
[44]   The conditional central limit theorem in Hilbert spaces [J].
Dedecker, J ;
Merlevède, F .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (02) :229-262
[45]   A Note on a Fixed Point Theorem in Hilbert Spaces [J].
Imdad, M. ;
Ali, Javid .
THAI JOURNAL OF MATHEMATICS, 2005, 3 (02) :219-221
[46]   Ergodic theorem, ergodic theory, and statistical mechanics [J].
Moore, Calvin C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (07) :1907-1911
[47]   A perturbation theorem for operator semigroups in Hilbert spaces [J].
C. Kaiser ;
L. Weis .
Semigroup Forum, 2003, 67 :63-75
[48]   A QUASI-ISOMETRIC EMBEDDING THEOREM FOR GROUPS [J].
Olshanskii, Alexander Yu ;
Osin, Denis V. .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (09) :1621-1648
[49]   Infinite Dimensional Bicomplex Spectral Decomposition Theorem [J].
Charak, Kuldeep Singh ;
Kumar, Ravinder ;
Rochon, Dominic .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) :593-605
[50]   On the Blum-Hanson theorem for quantum quadratic processes [J].
Mukhamedov, FM .
MATHEMATICAL NOTES, 2000, 67 (1-2) :81-86