Function Mining based on Gene Expression Programming and Particle Swarm Optimization

被引:2
作者
Li, Taiyong [1 ]
Wu, Jiang [2 ]
Dong, Tiangang [3 ]
He, Ting [4 ]
机构
[1] Southwestern Univ Finance & Econ, Sch Econ Informat Engn, Chengdu 610074, Peoples R China
[2] Southwestern Univ Finance & Econ, Res Ctr China Payment Syst, Chengdu 610074, Peoples R China
[3] Sichuan Univ, Sch Comp Sci, Chengdu 610065, Peoples R China
[4] Chengdu Univ Traditional Chinese Med, Coll Pharmaceut Sci, Chengdu 611130, Peoples R China
来源
2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4 | 2009年
关键词
evolutionary algorithm; function mining; gene expression programming; particle swarm optimization;
D O I
10.1109/ICCSIT.2009.5234621
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gene Expression Programming (GEP) is a powerful tool widely used in function mining. However, it is difficult for GEP to generate appropriate numeric constants for function mining. In this paper, a novel approach of creating numeric constants, GEPPSO, was proposed, which embedded Particle Swarm Optimization (PSO) into GEP. In the approach, the evolutionary process was divided into 2 phases: in the first phase, GEP focused on optimizing the structure of function expression, and in the second one, PSO focused on optimizing the constant parameters. The experimental results on function mining problems show that the performance of GEPPSO is better than that of the existing GEP Random Numerical Constants algorithm (GEP-RNC).
引用
收藏
页码:99 / +
页数:3
相关论文
共 50 条
  • [21] A fuzzy adaptive programming method of particle swarm optimization
    Kang, Qi
    Wang, Lei
    Wu, Qidi
    TENCON 2005 - 2005 IEEE REGION 10 CONFERENCE, VOLS 1-5, 2006, : 1136 - 1141
  • [22] Mining Fuzzy Association Rules Based on Parallel Particle Swarm Optimization Algorithm
    Gou, Jin
    Wang, Fei
    Luo, Wei
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2015, 21 (02) : 147 - 162
  • [23] Particle swarm optimization for function optimization in noisy environment
    Pan, Hui
    Wang, Ling
    Liu, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (02) : 908 - 919
  • [24] A hybrid Particle Swarm Optimization algorithm for function optimization
    Sevkli, Zulal
    Sevilgen, F. Erdogan
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 585 - +
  • [25] A model of immune gene expression programming for rule mining
    Zeng, Tao
    Tang, Changjie
    Xiang, Yong
    Chen, Peng
    Liu, Yintian
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2007, 13 (10) : 1484 - 1497
  • [26] Sequential linear programming and particle swarm optimization for the optimization of energy districts
    Riccietti, Elisa
    Bellavia, Stefania
    Sello, Stefano
    ENGINEERING OPTIMIZATION, 2019, 51 (01) : 84 - 100
  • [27] Optimization of classification algorithm based on gene expression programming
    Yang L.
    Li K.
    Zhang W.
    Zheng L.
    Ke Z.
    Qi Y.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (02) : 1261 - 1275
  • [28] A Hybrid Particle Swarm Algorithm for Function Optimization
    Yang, Jie
    Xie, Jiahua
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 2120 - 2123
  • [29] Particle swarm optimization based on Multiobjective Optimization
    Ma, Zirui
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4, 2013, 263-266 : 2146 - 2149
  • [30] The hybridized optimization with gene expression programming and niche technology for association rule mining
    Yang, Jie
    Chen, Yunliang
    Li, Dehua
    Chen, Qing
    Chen, Lei
    Huang, Gang
    PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS, 2007, : 467 - 472