Differences in responses of moderately salt-tolerant and salt-sensitive tree species to heterogeneous salinity

被引:8
|
作者
Feng, X. H. [1 ,2 ]
An, P. [3 ]
Guo, K. [1 ]
Li, X. G. [1 ,2 ]
Liu, X. J. [1 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Ctr Agr Resources Res, Key Lab Agr Water Resources, Shijiazhuang 050023, Hebei, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100101, Peoples R China
[3] Tottori Univ, Arid Land Res Ctr, Tottori 6800001, Japan
基金
中国博士后科学基金;
关键词
Fraxinus velutina; photosynthesis; poplar; Populus x euramericana; transpiration; velvet ash; HALOPHYTE ATRIPLEX-NUMMULARIA; ROOT-ZONE; WATER-UPTAKE; GROWTH; PHOTOSYNTHESIS; CHLORIDE; STRESS; SODIUM; NA+;
D O I
10.1007/s10535-018-0768-5
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Growth responses of the moderately salt-tolerant velvet ash (Fraxinus velutina) and salt-sensitive poplar (Populus x euramericana) were investigated under heterogeneous root zone salinity. The salinity treatments imposed on the two root zones (lower-higher) were 137-137 (uniform), 103-171, 68-205, 34-239, and 0-273 mM NaCl for velvet ash, and 51-51 (uniform), 34-68, 17-85, and 0-103 mM NaCl for poplar. The leaf gas exchange of the plants was measured one month after these treatments were implemented, and the plants were sampled 75 d after treatment to measure other physiological parameters. Net photosynthetic rate, transpiration rate, total biomass, and fine root compensatory growth increased as the difference in salinity between the two root zones (i.e., salinity heterogeneity) increased in velvet ash. These parameters showed no significant difference among the treatments in poplar. The leaf Na+ content was lower under heterogeneous salinity than under uniform salinity in both tested species. The leaf proline content in velvet ash decreased under heterogeneous salinity compared to that under uniform salinity, whereas that of poplar increased. The soluble sugar content of velvet ash leaves increased under heterogeneous salinity, whereas no changes were observed in poplar. The increased fine root biomass in the lower salinity zone promoted velvet ash growth by decreasing the leaf Na+ and Cl- content under heterogeneous salinity. The poplar's undifferentiated root distribution and gas exchange in response to the heterogeneous salinity were attributed to its salt sensitivity.
引用
收藏
页码:589 / 594
页数:6
相关论文
共 50 条
  • [31] Different Root Anatomical Changes in Salt-tolerant and Salt-sensitive Foxtail Millet Genotypes
    Karjunita, Nike
    Khumaida, Nurul
    Ardie, Sintho Wahyuning
    AGRIVITA, 2019, 41 (01): : 88 - 96
  • [32] Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive buffalograss clones
    Lin, H
    Wu, L
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1996, 36 (03) : 239 - +
  • [33] Effect of NaCl on ammonium and nitrate uptake and transport in salt-tolerant and salt-sensitive poplars
    Liu, Jian
    Li, Jing
    Deng, Chen
    Liu, Zhe
    Yin, Kexin
    Zhang, Ying
    Zhao, Ziyan
    Zhao, Rui
    Zhao, Nan
    Zhou, Xiaoyang
    Chen, Shaoliang
    TREE PHYSIOLOGY, 2024, 44 (03)
  • [34] Ion distribution in leaves of salt-tolerant and salt-sensitive lines of spring wheat under salt stress
    Ashraf, M
    OLeary, JW
    ACTA BOTANICA NEERLANDICA, 1997, 46 (02): : 207 - 217
  • [35] Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings
    Pallavi Mishra
    Kumari Bhoomika
    R. S. Dubey
    Protoplasma, 2013, 250 : 3 - 19
  • [36] Growth and physiological response of salt-sensitive and salt-tolerant rootstocks of citrus to paclobutrazol under salt stress
    Dubey, A. K.
    Srivastav, Manish
    Singh, A. K.
    Pandey, R. N.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2009, 79 (08): : 595 - 599
  • [37] Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress
    Ashraf, Muhammad
    Afzal, Muhammad
    Ahmad, Rashid
    Maqsood, Muhammad A.
    Shahzad, Sher M.
    Tahir, Mukkram A.
    Akhtar, Naeem
    Aziz, Ahsan
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2012, 58 (04) : 385 - 398
  • [38] Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings
    Mishra, Pallavi
    Bhoomika, Kumari
    Dubey, R. S.
    PROTOPLASMA, 2013, 250 (01) : 3 - 19
  • [39] Transcriptome Analysis Reveals Complex Defensive Mechanisms in Salt-Tolerant and Salt-Sensitive Shrub Willow Genotypes under Salinity Stress
    Sui, Dezong
    Wang, Baosong
    INTERNATIONAL JOURNAL OF GENOMICS, 2020, 2020
  • [40] Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.)
    Chawla, Sheetal
    Jain, Sunita
    Jain, Veena
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2013, 22 (01) : 27 - 34