Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic

被引:74
|
作者
Fakhraei, Shobeir [1 ]
Huang, Bert [1 ]
Raschid, Louiqa [1 ,2 ]
Getoor, Lise [1 ,3 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20740 USA
[2] Univ Maryland, Smith Sch Business, College Pk, MD 20740 USA
[3] Univ Calif Santa Cruz, Dept Comp Sci, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Link prediction; collective inference; heterogeneous similarities; drug target prediction; drug target interaction prediction; drug repurposing; drug discovery; polypharmacology; drug adverse effect prediction; statistical relational learning; hinge-loss Markov random fields; machine learning; bipartite networks; systems biology; ENTITY RESOLUTION; CONNECTIVITY MAP; INFORMATION; SIMILARITY;
D O I
10.1109/TCBB.2014.2325031
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Drug-target interaction studies are important because they can predict drugs' unexpected therapeutic or adverse side effects. In silico predictions of potential interactions are valuable and can focus effort on in vitro experiments. We propose a prediction framework that represents the problem using a bipartite graph of drug-target interactions augmented with drug-drug and target-target similarity measures and makes predictions using probabilistic soft logic (PSL). Using probabilistic rules in PSL, we predict interactions with models based on triad and tetrad structures. We apply (blocking) techniques that make link prediction in PSL more efficient for drug-target interaction prediction. We then perform extensive experimental studies to highlight different aspects of the model and the domain, first comparing the models with different structures and then measuring the effect of the proposed blocking on the prediction performance and efficiency. We demonstrate the importance of rule weight learning in the proposed PSL model and then show that PSL can effectively make use of a variety of similarity measures. We perform an experiment to validate the importance of collective inference and using multiple similarity measures for accurate predictions in contrast to non-collective and single similarity assumptions. Finally, we illustrate that our PSL model achieves state-of-the-art performance with simple, interpretable rules and evaluate our novel predictions using online data sets.
引用
收藏
页码:775 / 787
页数:13
相关论文
共 50 条
  • [31] VGAEDTI: drug-target interaction prediction based on variational inference and graph autoencoder
    Yuanyuan Zhang
    Yinfei Feng
    Mengjie Wu
    Zengqian Deng
    Shudong Wang
    BMC Bioinformatics, 24
  • [32] Deep-Learning-Based Drug-Target Interaction Prediction
    Wen, Ming
    Zhang, Zhimin
    Niu, Shaoyu
    Sha, Haozhi
    Yang, Ruihan
    Yun, Yonghuan
    Lu, Hongmei
    JOURNAL OF PROTEOME RESEARCH, 2017, 16 (04) : 1401 - 1409
  • [33] DT-Web: a web-based application for drug-target interaction and drug combination prediction through domain-tuned network-based inference
    Alaimo, Salvatore
    Bonnici, Vincenzo
    Cancemi, Damiano
    Ferro, Alfredo
    Giugno, Rosalba
    Pulvirenti, Alfredo
    BMC SYSTEMS BIOLOGY, 2015, 9
  • [34] Computational Model Development of Drug-Target Interaction Prediction: A Review
    Zhao, Qi
    Yu, Haifan
    Ji, Mingxuan
    Zhao, Yan
    Chen, Xing
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2019, 20 (06) : 492 - 494
  • [35] Drug-Target Interactions: Prediction Methods and Applications
    Anusuya, Shanmugam
    Kesherwani, Manish
    Priya, K. Vishnu
    Vimala, Antonydhason
    Shanmugam, Gnanendra
    Velmurugan, Devadasan
    Gromiha, M. Michael
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2018, 19 (06) : 537 - 561
  • [36] Drug-target interaction prediction by integrating heterogeneous information with mutual attention network
    Zhang, Yuanyuan
    Wang, Yingdong
    Wu, Chaoyong
    Zhan, Lingmin
    Wang, Aoyi
    Cheng, Caiping
    Zhao, Jinzhong
    Zhang, Wuxia
    Chen, Jianxin
    Li, Peng
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [37] A pseudo-label supervised graph fusion attention network for drug-target interaction prediction
    Xie, Yining
    Wang, Xiaodong
    Wang, Pengda
    Bi, Xueyan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 259
  • [38] Network-based prediction of drug-target interactions using an arbitrary-order proximity embedded deep forest
    Zeng, Xiangxiang
    Zhu, Siyi
    Hou, Yuan
    Zhang, Pengyue
    Li, Lang
    Li, Jing
    Huang, L. Frank
    Lewis, Stephen J.
    Nussinov, Ruth
    Cheng, Feixiong
    BIOINFORMATICS, 2020, 36 (09) : 2805 - 2812
  • [39] Prediction of Drug-Target Interactions With High- Quality Negative Samples and a Network-Based Deep Learning Framework
    Cheng, Zhixing
    Xu, Deling
    Ding, Dewu
    Ding, Yanrui
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (03) : 1567 - 1578
  • [40] Drug-Target Prediction Based on Dynamic Heterogeneous Graph Convolutional Network
    Xu, Peng
    Wei, Zhitao
    Li, Chuchu
    Yuan, Jiaqi
    Liu, Zaiyi
    Liu, Wenbin
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6997 - 7005