Network-Based Drug-Target Interaction Prediction with Probabilistic Soft Logic

被引:74
|
作者
Fakhraei, Shobeir [1 ]
Huang, Bert [1 ]
Raschid, Louiqa [1 ,2 ]
Getoor, Lise [1 ,3 ]
机构
[1] Univ Maryland, Dept Comp Sci, College Pk, MD 20740 USA
[2] Univ Maryland, Smith Sch Business, College Pk, MD 20740 USA
[3] Univ Calif Santa Cruz, Dept Comp Sci, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Link prediction; collective inference; heterogeneous similarities; drug target prediction; drug target interaction prediction; drug repurposing; drug discovery; polypharmacology; drug adverse effect prediction; statistical relational learning; hinge-loss Markov random fields; machine learning; bipartite networks; systems biology; ENTITY RESOLUTION; CONNECTIVITY MAP; INFORMATION; SIMILARITY;
D O I
10.1109/TCBB.2014.2325031
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Drug-target interaction studies are important because they can predict drugs' unexpected therapeutic or adverse side effects. In silico predictions of potential interactions are valuable and can focus effort on in vitro experiments. We propose a prediction framework that represents the problem using a bipartite graph of drug-target interactions augmented with drug-drug and target-target similarity measures and makes predictions using probabilistic soft logic (PSL). Using probabilistic rules in PSL, we predict interactions with models based on triad and tetrad structures. We apply (blocking) techniques that make link prediction in PSL more efficient for drug-target interaction prediction. We then perform extensive experimental studies to highlight different aspects of the model and the domain, first comparing the models with different structures and then measuring the effect of the proposed blocking on the prediction performance and efficiency. We demonstrate the importance of rule weight learning in the proposed PSL model and then show that PSL can effectively make use of a variety of similarity measures. We perform an experiment to validate the importance of collective inference and using multiple similarity measures for accurate predictions in contrast to non-collective and single similarity assumptions. Finally, we illustrate that our PSL model achieves state-of-the-art performance with simple, interpretable rules and evaluate our novel predictions using online data sets.
引用
收藏
页码:775 / 787
页数:13
相关论文
共 50 条
  • [1] Survey of network-based approaches of drug-target interaction prediction
    Jung, Lee Soo
    Cho, Young-Rae
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 1793 - 1796
  • [2] A Network-Based Embedding Method for Drug-Target Interaction Prediction
    Parvizi, Poorya
    Azuaje, Francisco
    Theodoratou, Evropi
    Luz, Saturnino
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5304 - 5307
  • [3] Network-Based Methods for Prediction of Drug-Target Interactions
    Wu, Zengrui
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    FRONTIERS IN PHARMACOLOGY, 2018, 9
  • [4] Drug-target interaction prediction through domain-tuned network-based inference
    Alaimo, Salvatore
    Pulvirenti, Alfredo
    Giugno, Rosalba
    Ferro, Alfredo
    BIOINFORMATICS, 2013, 29 (16) : 2004 - 2008
  • [5] Drug-Target Interaction Prediction Based on Heterogeneous Networks
    Wang, Yingjie
    Chang, Huiyou
    Wang, Jihong
    Shi, Yue
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 14 - 18
  • [6] Drug-Target Interaction Prediction Based on an Interactive Inference Network
    Chen, Yuqi
    Liang, Xiaomin
    Du, Wei
    Liang, Yanchun
    Wong, Garry
    Chen, Liang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (14)
  • [7] Recent Advances in the Machine Learning-based Drug-target Interaction Prediction
    Zhang, Wen
    Lin, Weiran
    Zhang, Ding
    Wang, Siman
    Shi, Jingwen
    Niu, Yanqing
    CURRENT DRUG METABOLISM, 2019, 20 (03) : 194 - 202
  • [8] The Computational Models of Drug-Target Interaction Prediction
    Ding, Yijie
    Tang, Jijun
    Guo, Fei
    PROTEIN AND PEPTIDE LETTERS, 2020, 27 (05) : 348 - 358
  • [9] Machine Learning for Drug-Target Interaction Prediction
    Chen, Ruolan
    Liu, Xiangrong
    Jin, Shuting
    Lin, Jiawei
    Liu, Juan
    MOLECULES, 2018, 23 (09):
  • [10] GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph
    Zhu, Yongdi
    Ning, Chunhui
    Zhang, Naiqian
    Wang, Mingyi
    Zhang, Yusen
    BMC BIOLOGY, 2024, 22 (01)