Advantages of supercritical CO2 compound fracturing in shale on fracture geometry, complexity and width

被引:41
|
作者
Chen, Hao [1 ,2 ]
Hu, Yi [1 ,3 ]
Kang, Yong [1 ,2 ]
Wang, Xiaochuan [1 ,2 ]
Liu, Feng [1 ,2 ]
Liu, Yiwei [1 ,2 ]
机构
[1] Wuhan Univ, Hubei Key Lab Waterjet Theory & New Technol, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SC-CO2 compound fracturing; Guar gum fracturing stage; Bedding planes; Fracture width; Fracture network complexity; CARBON-DIOXIDE; ACOUSTIC-EMISSION; UNITED-STATES; GAS SHALE; PROPAGATION; WATER; INITIATION; CHALLENGES; BEHAVIOR; FLUIDS;
D O I
10.1016/j.jngse.2021.104033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Supercritical carbon dioxide (SC-CO2) fracturing has a great prospect for shale gas development, but the poor proppant carrying capacity hinders its effective application. In this paper, SC-CO2 compound fracturing method was proposed, which uses SC-CO2 as the pad fluid to generate complex fracture network and guar gum fluid as the carrier fluid to support and extend the fracture. Relevant tri-axial SC-CO2 compound fracturing experiments with shale specimens were designed to compare with SC-CO2 fracturing and guar gum fracturing. It was found that the breakdown pressure of SC-CO2 fracturing was on average 20.24% lower than that of guar gum fracturing. Both SC-CO2 fracturing and SC-CO2 compound fracturing could generate more complex fracture geometry than guar gum fracturing, especially in specimens with vertical bedding planes where SC-CO2 compound fracturing formed a complex three-dimensional fracture network. A dimensionless index fc was proposed to quantitatively evaluate the complexity of induced fractures. Results show that the fracture complexity of SC-CO2 compound fracturing was on average 20.64% larger than SC-CO2 fracturing, indicating that SC-CO2 induced fractures can be extended by guar gum fracturing. Digital microscope found that SC-CO2 induced fracture width was less than 0.01 mm while fracture width induced by SC-CO2 compound fracturing was 0.04 mm-0.12 mm, manifesting that the guar gum fracturing stage can increase the width by approximately an order of magnitude. The results prove the feasibility of compound fracturing technology, which is of great significance to shale gas development.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Numerical Simulations of Fracture Propagation in Jointed Shale Reservoirs under CO2 Fracturing
    Zhang, Qi
    Ma, Dan
    Liu, Jiangfeng
    Wang, Jiehao
    Li, Xibing
    Zhou, Zilong
    GEOFLUIDS, 2019,
  • [22] Analysis of mechanisms of supercritical CO2 fracturing
    Wang Hai-Zhu
    Li Gen-sheng
    He Zhen-guo
    Shen Zhong-hou
    Li Xiao-jiang
    Zhang Zhen-xiang
    Wang Meng
    Yang Bing
    Zheng Yong
    Shi Lu-jie
    ROCK AND SOIL MECHANICS, 2018, 39 (10) : 3589 - 3596
  • [23] Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2
    Middleton, Richard S.
    Carey, J. William
    Currier, Robert P.
    Hyman, Jeffrey D.
    Kang, Qinjun
    Karra, Satish
    Jimenez-Martinez, Joaquin
    Porter, Mark L.
    Viswanathan, Hari S.
    APPLIED ENERGY, 2015, 147 : 500 - 509
  • [24] Quantitative Characterization of Water Fracturing and Supercritical CO2 Fracturing in Continental Shale: Synergistic Effects of Stress and Fluid Type
    Xing, Jianpeng
    Li, Xiao
    Guo, Peng
    Sun, Xiukuo
    Liu, Xianyang
    Chen, Hao
    Mei, Qiliang
    Zhou, Xinping
    Zhang, Kaiqiang
    ENERGY & FUELS, 2025, 39 (07) : 3422 - 3432
  • [25] An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO2
    He, Jianming
    Afolagboye, Lekan Olatayo
    Lin, Chong
    Wan, Xiaole
    ENERGIES, 2018, 11 (03)
  • [26] Fracture propagation and induced strain response during supercritical CO2 jet fracturing
    Can Cai
    Bang-Run Li
    Yi-Yao Zhang
    Wen He
    Ying-Xin Yang
    Yong Kang
    Ji-Wei Wu
    Petroleum Science, 2022, 19 (04) : 1682 - 1699
  • [27] Influence of Supercritical CO2 Fracturing Mode on the Fracture Morphology and Propagation Characteristics of Coal
    Sun, Xiaodong
    Zhao, Kaikai
    Wang, Shibin
    Song, Xuehang
    Liu, Liyuan
    ENERGY & FUELS, 2024, 38 (05) : 4325 - 4336
  • [28] The Mechanism of Proppant Transport during Flowback in Rough Fracture for Supercritical CO2 Fracturing
    Sun, Yuanxiu
    He, Liwei
    Dong, Bo
    Tuerhongbaiyi, Nuerlanjiang
    Li, Xiuxia
    Zhang, Qiushi
    ENERGY & FUELS, 2025, 39 (03) : 1694 - 1706
  • [29] Fracture propagation and induced strain response during supercritical CO2 jet fracturing
    Cai, Can
    Li, Bang-Run
    Zhang, Yi-Yao
    He, Wen
    Yang, Ying-Xin
    Kang, Yong
    Wu, Ji-Wei
    PETROLEUM SCIENCE, 2022, 19 (04) : 1682 - 1699
  • [30] The mechanism of proppant transport dynamic propagation in rough fracture for supercritical CO2 fracturing
    Sun, Yuanxiu
    He, Liwei
    Dong, Bo
    Tuerhongbaiyi, Nuerlanjiang
    Li, Xiuxia
    Zhang, Qiushi
    PHYSICS OF FLUIDS, 2024, 36 (10)