Advantages of supercritical CO2 compound fracturing in shale on fracture geometry, complexity and width

被引:41
|
作者
Chen, Hao [1 ,2 ]
Hu, Yi [1 ,3 ]
Kang, Yong [1 ,2 ]
Wang, Xiaochuan [1 ,2 ]
Liu, Feng [1 ,2 ]
Liu, Yiwei [1 ,2 ]
机构
[1] Wuhan Univ, Hubei Key Lab Waterjet Theory & New Technol, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SC-CO2 compound fracturing; Guar gum fracturing stage; Bedding planes; Fracture width; Fracture network complexity; CARBON-DIOXIDE; ACOUSTIC-EMISSION; UNITED-STATES; GAS SHALE; PROPAGATION; WATER; INITIATION; CHALLENGES; BEHAVIOR; FLUIDS;
D O I
10.1016/j.jngse.2021.104033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Supercritical carbon dioxide (SC-CO2) fracturing has a great prospect for shale gas development, but the poor proppant carrying capacity hinders its effective application. In this paper, SC-CO2 compound fracturing method was proposed, which uses SC-CO2 as the pad fluid to generate complex fracture network and guar gum fluid as the carrier fluid to support and extend the fracture. Relevant tri-axial SC-CO2 compound fracturing experiments with shale specimens were designed to compare with SC-CO2 fracturing and guar gum fracturing. It was found that the breakdown pressure of SC-CO2 fracturing was on average 20.24% lower than that of guar gum fracturing. Both SC-CO2 fracturing and SC-CO2 compound fracturing could generate more complex fracture geometry than guar gum fracturing, especially in specimens with vertical bedding planes where SC-CO2 compound fracturing formed a complex three-dimensional fracture network. A dimensionless index fc was proposed to quantitatively evaluate the complexity of induced fractures. Results show that the fracture complexity of SC-CO2 compound fracturing was on average 20.64% larger than SC-CO2 fracturing, indicating that SC-CO2 induced fractures can be extended by guar gum fracturing. Digital microscope found that SC-CO2 induced fracture width was less than 0.01 mm while fracture width induced by SC-CO2 compound fracturing was 0.04 mm-0.12 mm, manifesting that the guar gum fracturing stage can increase the width by approximately an order of magnitude. The results prove the feasibility of compound fracturing technology, which is of great significance to shale gas development.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Numerical modeling of fracture propagation of supercritical CO2 compound fracturing
    Chen, Hao
    Kang, Yong
    Jin, Wanchun
    Li, Changhai
    Cai, Can
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (07) : 2607 - 2628
  • [2] A review of experimental apparatus for supercritical CO2 fracturing of shale
    Zhang, Xiufeng
    Zhu, Wancheng
    Xu, Zenghe
    Liu, Shuyuan
    Wei, Chenhui
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [3] Analysis of Fracturing Expansion Law of Shale Reservoir by Supercritical CO2 Fracturing and Mechanism Revealing
    Wang, Li
    Zheng, Aiwei
    Lu, Wentao
    Shen, Tong
    Wang, Weixi
    Wei, Lai
    Chang, Zhen
    Li, Qingchao
    ENERGIES, 2024, 17 (16)
  • [4] The effect of shale bedding on supercritical CO2 jet fracturing: A experimental study
    Cai, Can
    Kang, Yong
    Yang, Yingxin
    Wang, Xiaochuan
    Li, Yang
    Huang, Man
    Wu, Jiwei
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 195
  • [5] Hydraulic Fracturing Behavior in Shale with Water and Supercritical CO2 under Triaxial Compression
    He, Jianming
    Zhang, Yixiang
    Yin, Chao
    Li, Xiao
    GEOFLUIDS, 2020, 2020
  • [6] Fracture initiation and propagation under different perforation orientation angles in supercritical CO2 fracturing
    Chen, Hao
    Hu, Yi
    Kang, Yong
    Cai, Can
    Liu, Jiawei
    Liu, Yiwei
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 183
  • [7] Supercritical CO2 fracturing with different drilling depths in shale
    Yang, Hongwei
    Zhao, Yuan
    Zhang, Xinghua
    Liu, Guojun
    Du, Xidong
    Shang, Delei
    Yu, Yongjun
    Chen, Juan
    Wang, Hui
    Tu, Huaijian
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (04) : 10603 - 10622
  • [8] Quantitative Characterization of Water Fracturing and Supercritical CO2 Fracturing in Continental Shale: Synergistic Effects of Stress and Fluid Type
    Xing, Jianpeng
    Li, Xiao
    Guo, Peng
    Sun, Xiukuo
    Liu, Xianyang
    Chen, Hao
    Mei, Qiliang
    Zhou, Xinping
    Zhang, Kaiqiang
    ENERGY & FUELS, 2025, 39 (07) : 3422 - 3432
  • [9] Experimental study on the supercritical CO2 fracturing of shale considering anisotropic effects
    Zhang, Yixiang
    He, Jianming
    Li, Xiao
    Lin, Chong
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 173 : 932 - 940
  • [10] Nanoscale Analysis of Shale Matrix Alteration after Supercritical CO2 Treatment: Implications for scCO2 Fracturing in Shales
    Memon, Shoaib
    Verrall, Michael
    Lebedev, Maxim
    Giwelli, Ausama
    Keshavarz, Alireza
    Xie, Quan
    Sarmadivaleh, Mohammad
    ENERGY & FUELS, 2024, 38 (03) : 1873 - 1890