Siegel families with application to class fields

被引:2
作者
Koo, Ja Kyung [1 ]
Shin, Dong Hwa [2 ]
Yoon, Dong Sung [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
[2] Hankuk Univ Foreign Studies, Dept Math, Yongin 17035, Gyeonggi Do, South Korea
[3] Ulsan Natl Inst Sci & Technol, Dept Math Sci, Ulsan 44919, South Korea
关键词
abelian varieties; class field theory; Shimura's reciprocity law; CM-fields; Siegel modular functions;
D O I
10.1017/S030821051700052X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate certain families of meromorphic Siegel modular functions on which Galois groups act in a natural way. By using Shimura's reciprocity law we construct some algebraic numbers in the ray class fields of CM-fields in terms of special values of functions in these Siegel families.
引用
收藏
页码:751 / 771
页数:21
相关论文
共 13 条
  • [1] [Anonymous], 2004, Grundl. Math. Wiss.
  • [2] [Anonymous], 1971, PUBLICATIONS MATH SO
  • [3] [Anonymous], 2014, Math. Sci. Res. Inst. Publ
  • [4] GRANT D, 1991, P LOND MATH SOC, V62, P121
  • [5] ON GRADED RING OF THETA-CONSTANTS .2.
    IGUSA, JI
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) : 221 - &
  • [6] On some Fricke families and application to the Lang-Schertz conjecture
    Jung, Ho Yun
    Koo, Ja Kyung
    Shin, Dong Hwa
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (04) : 723 - 740
  • [7] Klingen H, 1990, Cambridge Studies in Advanced Mathematics, V20
  • [8] Koo J.K., 2015, PREPRINT
  • [9] Koo JK, 2017, RAMANUJAN J, V42, P583, DOI 10.1007/s11139-015-9742-4
  • [10] Kubert Daniel S., 1981, Fundamental Principles of Mathematical Sciences, V244