Optimal thermodynamic control in open quantum systems

被引:43
作者
Cavina, Vasco [1 ,2 ]
Mari, Andrea [1 ,2 ]
Carlini, Alberto [3 ]
Giovannetti, Vittorio [1 ,2 ]
机构
[1] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[2] CNR, Ist Nanosci, I-56126 Pisa, Italy
[3] Univ Piemonte Orientale Amedeo Avogadro, Dipartimento Sci & Innovaz Tecnol, I-13100 Vercelli, VC, Italy
关键词
MAXIMUM POWER OUTPUT; HEAT ENGINE; EFFICIENCY; WORK;
D O I
10.1103/PhysRevA.98.012139
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply advanced methods of control theory to open quantum systems and we determine finite-time processes which are optimal with respect to thermodynamic performances. General properties and necessary conditions characterizing optimal drivings are derived, obtaining bang-bang-type solutions corresponding to control strategies switching between adiabatic and isothermal transformations. A direct application of these results is the maximization of the work produced by a generic quantum heat engine, where we show that the maximum power is directly linked to a particular conserved quantity naturally emerging from the control problem. Finally we apply our general approach to the specific case of a two-level system, which can be put in contact with two different baths at fixed temperatures, identifying the processes that minimize heat dissipation. Moreover, we explicitly solve the optimization problem for a cyclic two-level heat engine driven beyond the linear-response regime, determining the corresponding optimal cycle, the maximum power, and the efficiency at maximum power.
引用
收藏
页数:10
相关论文
共 60 条
[41]   Speeding up and slowing down the relaxation of a qubit by optimal control [J].
Mukherjee, Victor ;
Carlini, Alberto ;
Mari, Andrea ;
Caneva, Tommaso ;
Montangero, Simone ;
Calarco, Tommaso ;
Fazio, Rosario ;
Giovannetti, Vittorio .
PHYSICAL REVIEW A, 2013, 88 (06)
[42]   How nanomechanical systems can minimize dissipation [J].
Muratore-Ginanneschi, Paolo ;
Schwieger, Kay .
PHYSICAL REVIEW E, 2014, 90 (06)
[43]   Performance of a quantum heat engine at strong reservoir coupling [J].
Newman, David ;
Mintert, Florian ;
Nazir, Ahsan .
PHYSICAL REVIEW E, 2017, 95 (03)
[44]   Strong Coupling Corrections in Quantum Thermodynamics [J].
Perarnau-Llobet, M. ;
Wilming, H. ;
Riera, A. ;
Gallego, R. ;
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2018, 120 (12)
[45]   Irreversible performance of a quantum harmonic heat engine [J].
Rezek, Yair ;
Kosloff, Ronnie .
NEW JOURNAL OF PHYSICS, 2006, 8
[46]   Geometric approach to optimal nonequilibrium control: Minimizing dissipation in nanomagnetic spin systems [J].
Rotskoff, Grant M. ;
Crooks, Gavin E. ;
Vanden-Eijnden, Eric .
PHYSICAL REVIEW E, 2017, 95 (01)
[47]   Optimal Coherent Control to Counteract Dissipation [J].
Sauer, Simeon ;
Gneiting, Clemens ;
Buchleitner, Andreas .
PHYSICAL REVIEW LETTERS, 2013, 111 (03)
[48]   Thermalizing quantum machines: Dissipation and entanglement [J].
Scarani, V ;
Ziman, M ;
Stelmachovic, P ;
Gisin, N ;
Buzek, V .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :979051-979054
[49]  
Schmiedl T., 2007, EPL, V81