Optimal thermodynamic control in open quantum systems

被引:43
作者
Cavina, Vasco [1 ,2 ]
Mari, Andrea [1 ,2 ]
Carlini, Alberto [3 ]
Giovannetti, Vittorio [1 ,2 ]
机构
[1] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[2] CNR, Ist Nanosci, I-56126 Pisa, Italy
[3] Univ Piemonte Orientale Amedeo Avogadro, Dipartimento Sci & Innovaz Tecnol, I-13100 Vercelli, VC, Italy
关键词
MAXIMUM POWER OUTPUT; HEAT ENGINE; EFFICIENCY; WORK;
D O I
10.1103/PhysRevA.98.012139
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply advanced methods of control theory to open quantum systems and we determine finite-time processes which are optimal with respect to thermodynamic performances. General properties and necessary conditions characterizing optimal drivings are derived, obtaining bang-bang-type solutions corresponding to control strategies switching between adiabatic and isothermal transformations. A direct application of these results is the maximization of the work produced by a generic quantum heat engine, where we show that the maximum power is directly linked to a particular conserved quantity naturally emerging from the control problem. Finally we apply our general approach to the specific case of a two-level system, which can be put in contact with two different baths at fixed temperatures, identifying the processes that minimize heat dissipation. Moreover, we explicitly solve the optimization problem for a cyclic two-level heat engine driven beyond the linear-response regime, determining the corresponding optimal cycle, the maximum power, and the efficiency at maximum power.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Optimal performance of a quantum Otto refrigerator [J].
Abah, Obinna ;
Lutz, Eric .
EPL, 2016, 113 (06)
[2]   QUANTUM OPEN SYSTEM AS A MODEL OF THE HEAT ENGINE [J].
ALICKI, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (05) :L103-L107
[3]   Optimal refrigerator [J].
Allahverdyan, Armen E. ;
Hovhannisyan, Karen ;
Mahler, Guenter .
PHYSICAL REVIEW E, 2010, 81 (05)
[4]   Thermodynamics of discrete quantum processes [J].
Anders, Janet ;
Giovannetti, Vittorio .
NEW JOURNAL OF PHYSICS, 2013, 15
[5]   Current Trends in Finite-Time Thermodynamics [J].
Andresen, Bjarne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (12) :2690-2704
[6]  
[Anonymous], 2018, Mathematical Theory of Optimal Processes
[7]  
[Anonymous], 2004, IEEE T AUTOMAT CONTR, DOI DOI 10.1109/TAC.1972.1100008
[8]   Adiabatic Response for Lindblad Dynamics [J].
Avron, J. E. ;
Fraas, M. ;
Graf, G. M. .
JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (05) :800-823
[9]   Optimal performance of periodically driven, stochastic heat engines under limited control [J].
Bauer, Michael ;
Brandner, Kay ;
Seifert, Udo .
PHYSICAL REVIEW E, 2016, 93 (04)
[10]   Scaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity [J].
Beau, Mathieu ;
Jaramillo, Juan ;
del Campo, Adolfo .
ENTROPY, 2016, 18 (05)