Boltzmann equation and Monte Carlo studies of electron transport in resistive plate chambers

被引:13
作者
Bosnjakovic, D. [1 ,2 ]
Petrovic, Z. Lj [1 ,2 ]
White, R. D. [3 ]
Dujko, S. [1 ]
机构
[1] Univ Belgrade, Inst Phys, Belgrade 11070, Serbia
[2] Univ Belgrade, Fac Elect Engn, Belgrade 11120, Serbia
[3] James Cook Univ, ARC Ctr Antimatter Matter Studies, Sch Engn & Phys Sci, Townsville, Qld 4811, Australia
基金
澳大利亚研究理事会;
关键词
resistive plate chambers; Boltzmann equation; Monte Carlo simulation; electron transport coefficients; negative differential conductivity; NEGATIVE DIFFERENTIAL CONDUCTIVITY; VELOCITY DISTRIBUTION FUNCTION; SIMULATION; GASES; COEFFICIENTS; PHYSICS; SWARMS; DEFINITION; ATTACHMENT; DIFFUSION;
D O I
10.1088/0022-3727/47/43/435203
中图分类号
O59 [应用物理学];
学科分类号
摘要
A multi term theory for solving the Boltzmann equation and Monte Carlo simulation technique are used to investigate electron transport in Resistive Plate Chambers (RPCs) that are used for timing and triggering purposes in many high energy physics experiments at CERN and elsewhere. Using cross sections for electron scattering in C2H2F4, iso-C4H10 and SF6 as an input in our Boltzmann and Monte Carlo codes, we have calculated data for electron transport as a function of reduced electric field E/N in various C2H2F4/iso-C4H10/SF6 gas mixtures used in RPCs in the ALICE, CMS and ATLAS experiments. Emphasis is placed upon the explicit and implicit effects of non-conservative collisions (e.g. electron attachment and/or ionization) on the drift and diffusion. Among many interesting and atypical phenomena induced by the explicit effects of non-conservative collisions, we note the existence of negative differential conductivity (NDC) in the bulk drift velocity component with no indication of any NDC for the flux component in the ALICE timing RPC system. We systematically study the origin and mechanisms for such phenomena as well as the possible physical implications which arise from their explicit inclusion into models of RPCs. Spatially-resolved electron transport properties are calculated using a Monte Carlo simulation technique in order to understand these phenomena.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Monte Carlo analysis of electron transport in GaInAsSb material
    El Ouchdi, A. A.
    Belhadji, Y.
    Chiali, I.
    Tahir, N.
    Abdellaoui, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2024, 26 (9-10): : 405 - 412
  • [42] Periodic structures in the Franck-Hertz experiment with neon: Boltzmann equation and Monte-Carlo analysis
    White, R. D.
    Robson, R. E.
    Nicoletopoulos, P.
    Dujko, S.
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (05)
  • [43] Thermal transport in thermoelectric materials of SnSSe and SnS2: A non-equilibrium Monte-Carlo simulation of Boltzmann transport equation
    Bahadori, Seyedeh Ameneh
    Shomali, Zahra
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 57
  • [44] A Monte Carlo simulation for electron scattering and collision for electron transport in low-temperature plasmas
    Abdul-Nabi, Rawaa A.
    INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2023, 45 (06) : 586 - 601
  • [45] On the Expedient Solution of the Boltzmann Equation by Modified Time Relaxed Monte Carlo (MTRMC) Method
    Eskandari, M.
    Nourazar, S. S.
    JOURNAL OF APPLIED FLUID MECHANICS, 2018, 11 (03) : 655 - 666
  • [46] Algorithms and Numerical Implementation of Imitation Monte Carlo Methods with Splitting for Problems of the Boltzmann Equation
    Khisamutdinov, Alfred
    Velker, Nikolay
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2016, 45 (03) : 230 - 241
  • [47] Long-term performance and longevity studies o the CMS Resistive Plate Chambers
    Rabadan-Trejo, R. I.
    Fagot, A.
    Gul, M.
    Roskas, C.
    Tytgat, M.
    Zaganidis, N.
    Fonseca De Souza, S.
    Santoro, A.
    Torres Da Silva De Araujo, F.
    Aleksandrov, A.
    Hadjiiska, R.
    Iaydjiev, P.
    Rodozov, M.
    Shopova, M.
    Sultanov, G.
    Dimitrov, A.
    Litov, L.
    Pavlov, B.
    Petkov, P.
    Petrov, A.
    Qian, S. J.
    Han, D.
    Yi, W.
    Avila, C.
    Cabrera, A.
    Carrillo, C.
    Segura, M.
    Aly, S.
    Assran, Y.
    Mahrous, A.
    Mohamed, A.
    Combaret, C.
    Gouzevitch, M.
    Grenier, G.
    Lagarde, F.
    Laktineh, I. B.
    Mathez, H.
    Mirabito, L.
    Shchablo, K.
    Bagaturia, I.
    Lomidze, D.
    Lomidze, I.
    Pant, L. M.
    Bhatnagar, V.
    Gupta, R.
    Kumari, R.
    Lohan, M.
    Singh, J. B.
    Amoozegar, V.
    Boghrati, B.
    JOURNAL OF INSTRUMENTATION, 2018, 13
  • [48] Monte Carlo analysis of electron transport coefficients and excitation rates of H2X1Σg+(ν) states in hydrogen plasma
    Eshghi, F.
    Mahjour-Shafiei, M.
    PHYSICS OF PLASMAS, 2025, 32 (01)
  • [49] Quantum mechanical Monte Carlo approach to electron transport at heterointerface
    Tsuchiya, H
    Miyoshi, T
    SUPERLATTICES AND MICROSTRUCTURES, 2000, 27 (5-6) : 529 - 532
  • [50] Single Scattering Adjoint Monte Carlo Electron Transport in FRENSIE
    Kersting, Luke J.
    Robinson, Alex
    Moll, Eli
    Britt, Philip
    Gross, Lewis
    Henderson, Douglass
    NUCLEAR SCIENCE AND ENGINEERING, 2020, 194 (05) : 350 - 372