Low-velocity impact damage prediction of composite laminates using linearized contact law

被引:0
|
作者
Choi, Ik Hyeon [1 ]
机构
[1] Korea Aerosp Res Inst, Airframe Struct & Mat Dept, Taejon 305333, South Korea
来源
ADVANCES IN COMPOSITE MATERIALS AND STRUCTURES, PTS 1 AND 2 | 2007年 / 334-335卷
关键词
linearized contact law; low-velocity impact; composite laminate; damage prediction;
D O I
10.4028/www.scientific.net/KEM.334-335.261
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, author had presented that impact force history of composite laminates subjected to low-velocity impact could be well analyzed using linearized contact law instead of the modified Hertzian contact law. If the linearized contact law concept is applied in impact response analysis, the impact problem can be transformed as a general structural analysis problem, so general purpose FEM software can be used in this kind of impact response analysis. In the present study it will be shown that impact damage, specially delamination area, as well as impact response can be well analyzed using the linearized contact law concept. In order to accurately predict delamination area, geometrical nonlinear analysis considering large deflection effect of plate has been performed and thermal stress analysis to consider thermal residual strain induced in curing process has been performed. Also, a proper failure criterion for delamination estimation has been used. In this failure criterion, in-situ strength values, obtained through matrix crack onset analysis have been used. Finally, analytically predicted delamination areas have been compared with experimental results. It shows that this analytical procedure can well predict delamination area of composite laminates subjected to the low-velocity impact.
引用
收藏
页码:261 / 264
页数:4
相关论文
共 50 条
  • [21] Numerical analysis of influence factors on low-velocity impact damage of stitched composite laminates
    Mao, Chunjian
    Zhang, Chao
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2020, 27 (12) : 1019 - 1028
  • [22] Assessment of damage prediction models for composite laminates under single and repeated low-velocity impacts
    Li, Fengzhong
    Jin, Shijie
    Li, Weiran
    Luo, Zhongbing
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 155
  • [23] Numerical simulation of low-velocity impact damage behaviour of composite laminates based on SMA superelasticity
    Zhang L.
    Hu D.
    Jia A.
    Wang R.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2017, 34 (02): : 364 - 373
  • [24] De lamination Threshold Load of Composite Laminates under Low-Velocity Impact
    Xu, Y. G.
    Shen, Z.
    Tiu, W.
    Xu, Y. Z.
    Chen, Y.
    Haritos, G.
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS XI, 2013, 525-526 : 521 - +
  • [25] Low-velocity impact response and damage tolerance of hybrid biaxial/triaxial braided composite laminates
    Wu, Zhenyu
    Wang, Kang
    Shi, Lin
    Cheng, Xiaoying
    Yuan, Yanhong
    POLYMER COMPOSITES, 2023, 44 (06) : 3068 - 3083
  • [26] Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact
    Li, Xi
    Ma, Dayou
    Liu, Huifang
    Tan, Wei
    Gong, Xiaojing
    Zhang, Chao
    Li, Yulong
    COMPOSITE STRUCTURES, 2019, 207 : 727 - 739
  • [27] On impact damage of composite shells by a low-velocity projectile
    Zhao, GP
    Cho, CD
    JOURNAL OF COMPOSITE MATERIALS, 2004, 38 (14) : 1231 - 1254
  • [28] Prediction of internal damage due to low-velocity impact
    Huang, JY
    Chen, JS
    Hong, TB
    EVOLVING TECHNOLOGIES FOR THE COMPETITIVE EDGE, BOOKS 1 AND 2, 1997, 42 : 470 - 476
  • [29] On multiple low-velocity impact response and compression after impact of composite laminates
    Hu, Peng
    Jian, Yue'ao
    Hu, Cheng
    Zhang, Nan
    Wang, Xinwei
    Cai, Deng'an
    Zhou, Guangming
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2025, 32 (06) : 1043 - 1057
  • [30] Probability Analysis for Impact Behavior of Composite Laminates Subjected to Low-Velocity Impact
    Ha, Seung-Chul
    Kim, In-Gul
    Lee, Seokje
    Cho, Sang-Gyu
    Jang, Moon-Ho
    Choi, Ik-Hyeon
    COMPOSITES RESEARCH, 2009, 22 (06): : 18 - 22