MicroRNA and brain tumors: A cause and a cure?

被引:22
作者
Mathupala, Saroj P.
Mittal, Sandeep
Guthikonda, Murali
Sloan, Andrew E.
机构
[1] Wayne State Univ, Sch Med, Dept Neurol Surg, Detroit, MI 48202 USA
[2] Wayne State Univ, Sch Med, Karmanos Canc Inst, Detroit, MI 48202 USA
[3] Univ S Florida, Moffitt Canc Ctr, Dept Neurosurg, Tampa, FL 33620 USA
关键词
D O I
10.1089/dna.2006.0560
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Malignant brain tumors, including high-grade gliomas, are among the most lethal of all cancers. Despite considerable advances, including multi-modal treatments with surgery, radiotherapy, and chemotherapy, the overall prognosis remains dismal for patients diagnosed with these tumors. With the discovery of RNA interference (RNAi) for target-specific gene silencing via small interfering RNA (siRNA), a novel method to target malignant gliomas has been exposed, an endeavor that is aggressively being carried out in numerous laboratories. However, practical difficulties in tissue- or organ-specific targeting of therapeutic quantities of siRNA still preclude its applicability in a clinical setting. MicroRNA (miRNA), an endogenously expressed form of siRNA, not only presents an alternate method to induce RNAi in a given diseased tissue or organ, but also exposes a unique set of diagnostic markers that can be used to identify, and then differentiate between tumor grades. Thus, miRNA can be considered the cells' answer to siRNA. Discovered over a decade ago, miRNA is fast becoming recognized as crucial in regulating gene expression in cancers. Therein lies the therapeutic potential of miRNA, as it may now be possible to induce or inhibit RNAi in a given diseased cell population by controlling the cells' miRNA expression profile. This review outlines the potential of miRNA as a therapeutic strategy against high-grade gliomas, and also the technological hurdles that need to be addressed before this promising technique can be administered in a clinical setting.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 71 条
[1]  
*AM BRAIN TUM ASS, 2006, PRIM BRAIN TUM, P13
[2]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[3]  
[Anonymous], 2005, PRIM BRAIN TUM US ST
[4]   Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J].
Baskerville, S ;
Bartel, DP .
RNA, 2005, 11 (03) :241-247
[5]   Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis [J].
Berezikov, Eugene ;
van Tetering, Geert ;
Verheul, Mark ;
van de Belt, Jose ;
van Laake, Linda ;
Vos, Joost ;
Verloop, Robert ;
van de Wetering, Marc ;
Guryev, Victor ;
Takada, Shuji ;
van Zonneveld, Anton Jan ;
Mano, Hiroyuki ;
Plasterk, Ronald ;
Cuppen, Edwin .
GENOME RESEARCH, 2006, 16 (10) :1289-1298
[6]   Approaches to microRNA discovery [J].
Berezikov, Eugene ;
Cuppen, Edwin ;
Plasterk, Ronald H. A. .
NATURE GENETICS, 2006, 38 (Suppl 6) :S2-S7
[7]   miR-15a and miR-16-1 down-regulation in pituitary adenomas [J].
Bottoni, A ;
Piccin, D ;
Tagliati, F ;
Luchin, A ;
Zatelli, MC ;
Uberti, ECD .
JOURNAL OF CELLULAR PHYSIOLOGY, 2005, 204 (01) :280-285
[8]   Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs [J].
Cai, XZ ;
Hagedorn, CH ;
Cullen, BR .
RNA, 2004, 10 (12) :1957-1966
[9]   Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia [J].
Calin, GA ;
Dumitru, CD ;
Shimizu, M ;
Bichi, R ;
Zupo, S ;
Noch, E ;
Aldler, H ;
Rattan, S ;
Keating, M ;
Rai, K ;
Rassenti, L ;
Kipps, T ;
Negrini, M ;
Bullrich, F ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (24) :15524-15529
[10]   Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J].
Calin, GA ;
Sevignani, C ;
Dan Dumitru, C ;
Hyslop, T ;
Noch, E ;
Yendamuri, S ;
Shimizu, M ;
Rattan, S ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2999-3004