The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins

被引:143
作者
Campbell, D [1 ]
Eriksson, MJ [1 ]
Öquist, G [1 ]
Gustafsson, P [1 ]
Clarke, AK [1 ]
机构
[1] Umea Univ, Dept Plant Physiol, S-90187 Umea, Sweden
关键词
photosynthesis; phycobiliprotein; psbA;
D O I
10.1073/pnas.95.1.364
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Current ambient UV-B levels can significantly depress productivity in aquatic habitats, largely because UV-B inhibits several steps of photosynthesis, including the photooxidation of water catalyzed by photosystem II, We show that upon UV-B exposure the cyanobacterium Synechococcus sp, PCC 7942 rapidly changes the expression of a family of three psbA genes encoding photosystem II D1 proteins, In wild-type cells the psbAI gene is expressed constitutively, but strong accumulations of psbAII and psbAIII transcripts are induced within 15 min of moderate UV-B exposure (0.4 W/m(2)), This transcriptional response causes an exchange of two distinct photosystem II D1 proteins, D1:1 is encoded by psbAI, but on UV-B exposure, it is largely replaced by the alternate D1:2 form, encoded by both psbAII and psbAIII, The total content of D1 and other photosystem II reaction center protein, D2, remained unchanged throughout the UV exposure, as did the content and composition of the phycobilisome, Wild-type cells suffered only slight transient inhibition of photosystem II function under UV-B exposure, In marked contrast, under the same UV-B treatment, a mutant strain expressing only psbAI suffered severe (40%) and sustained inhibition of photosystem II function, Another mutant strain with constitutive expression of psbAII and psbAIII was almost completely resistant to the UV-B treatment, showing no inhibition of photosystem II function and only a slight drop in electron transport, In Synechococcus the rapid exchange of alternate D1 forms, therefore, accounts for much of the cellular resistance to UV-B inhibition of photosystem II activity and photosynthetic electron transport, This molecular plasticity may be an important element in community-level responses to UV-B, where susceptibility to UV-B inhibition of photosynthesis changes diurnally.
引用
收藏
页码:364 / 369
页数:6
相关论文
共 58 条
[1]   Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach [J].
Araoz, R ;
Hader, DP .
FEMS MICROBIOLOGY ECOLOGY, 1997, 23 (04) :301-313
[2]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[3]   DEGRADATION OF THE DI-PROTEIN OF PHOTOSYSTEM-II REACTION-CENTER BY ULTRAVIOLET-B RADIATION REQUIRES THE PRESENCE OF FUNCTIONAL MANGANESE ON THE DONOR SIDE [J].
BARBATO, R ;
FRIZZO, A ;
FRISO, G ;
RIGONI, F ;
GIACOMETTI, GM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 227 (03) :723-729
[4]   CLONING OF THE CPCE AND CPCF GENES FROM SYNECHOCOCCUS SP PCC-6301 AND THEIR INACTIVATION IN SYNECHOCOCCUS SP PCC-7942 [J].
BHALERAO, RP ;
LIND, LK ;
GUSTAFSSON, P .
PLANT MOLECULAR BIOLOGY, 1994, 26 (01) :313-326
[5]   DELAY OF CELL-DIFFERENTIATION IN ANABAENA-AEQUALIS CAUSED BY UV-B RADIATION AND THE ROLE OF PHOTOREACTIVATION AND EXCISION-REPAIR [J].
BLAKEFIELD, MK ;
HARRIS, DO .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1994, 59 (02) :204-208
[6]   DIFFERENT AND RAPID RESPONSES OF 4 CYANOBACTERIAL PSBA TRANSCRIPTS TO CHANGES IN LIGHT-INTENSITY [J].
BUSTOS, SA ;
SCHAEFER, MR ;
GOLDEN, SS .
JOURNAL OF BACTERIOLOGY, 1990, 172 (04) :1998-2004
[7]   LIGHT-REGULATED EXPRESSION OF THE PSBD GENE FAMILY IN SYNECHOCOCCUS-SP STRAIN PCC-7942 - EVIDENCE FOR THE ROLE OF DUPLICATED PSBD GENES IN CYANOBACTERIA [J].
BUSTOS, SA ;
GOLDEN, SS .
MOLECULAR & GENERAL GENETICS, 1992, 232 (02) :221-230
[8]   ELECTRON-TRANSPORT REGULATES EXCHANGE OF 2 FORMS OF PHOTOSYSTEM-II D1 PROTEIN IN THE CYANOBACTERIUM SYNECHOCOCCUS [J].
CAMPBELL, D ;
ZHOU, GQ ;
GUSTAFSSON, P ;
OQUIST, G ;
CLARKE, AK .
EMBO JOURNAL, 1995, 14 (22) :5457-5466
[9]   Two forms of the photosystem II D1 protein alter energy dissipation and state transitions in the cyanobacterium Synechococcus sp PCC 7942 [J].
Campbell, D ;
Bruce, D ;
Carpenter, C ;
Gustafsson, P ;
Oquist, G .
PHOTOSYNTHESIS RESEARCH, 1996, 47 (02) :131-144
[10]   RAPID INTERCHANGE BETWEEN 2 DISTINCT FORMS OF CYANOBACTERIAL PHOTOSYSTEM-II REACTION-CENTER PROTEIN-D1 IN RESPONSE TO PHOTOINHIBITION [J].
CLARKE, AK ;
SOITAMO, A ;
GUSTAFSSON, P ;
OQUIST, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (21) :9973-9977