Three solutions for a Dirichlet boundary value problem involving the p-Laplacian

被引:36
作者
Afrouzi, G. A. [1 ]
Heidarkhani, S. [1 ]
机构
[1] Mazandaran Univ, Fac Basic Sci, Dept Math, Babol Sar, Iran
关键词
three solutions; critical point; multiplicity results; Dirichlet problem;
D O I
10.1016/j.na.2006.03.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of at least three weak solutions for the problem {Delta(p)u + lambda f(x, u) = a(x)vertical bar u vertical bar(p-2)u in Omega, {u = 0 on partial derivative Omega. Our main tool is a recent three critical points Theorem of B. Ricceri [On a three critical points theorem, Arch. Math. (Basel) 75 (2000) 220-2261. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2281 / 2288
页数:8
相关论文
共 7 条
[1]   Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the p-Laplacian [J].
Anello, G ;
Cordaro, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :511-519
[2]   Three symmetric positive solutions for a second-order boundary value problem [J].
Avery, RI ;
Henderson, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :1-7
[3]   Existence of three solutions for a two point boundary value problem [J].
Bonannao, G .
APPLIED MATHEMATICS LETTERS, 2000, 13 (05) :53-57
[4]  
Ramaswamy M, 2004, DIFFER INTEGRAL EQU, V17, P1255
[5]   Existence of three solutions for a class of elliptic eigenvalue problems [J].
Ricceri, B .
MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (11-13) :1485-1494
[6]   On a three critical points theorem [J].
Ricceri, B .
ARCHIV DER MATHEMATIK, 2000, 75 (03) :220-226
[7]  
Talenti G, 1987, INT SER NUMER MATH, V5, P401