Secure and Robust Identification via Classical-Quantum Channels

被引:9
作者
Boche, Holger [1 ,2 ]
Deppe, Christian [3 ]
Winter, Andreas [4 ,5 ]
机构
[1] Tech Univ Munich, Lehrstuhl Theoret Informat Tech, D-80333 Munich, Germany
[2] Munich Ctr Quantum Sci & Technol, D-80799 Munich, Germany
[3] Tech Univ Munich, Lehrstuhl Nachrichtentech, D-80333 Munich, Germany
[4] ICREA, Barcelona 08010, Spain
[5] Univ Autonoma Barcelona, Grup Inforrnacio Quant, Dept Fis, E-08193 Barcelona, Spain
关键词
Information theory-channel capacities; quantum cryptography; STRONG CONVERSE; CAPACITY; WATERMARKING; INFORMATION; COMPOUND; ENTROPY; CODES;
D O I
10.1109/TIT.2019.2920952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the identification capacity of classicalquantum channels ("cq-channels") under channel uncertainty and privacy constraints. To be precise, we first consider compound memoryless cq-channels and determine their identification capacity; then we add an eavesdropper by considering compound memoryless wiretap cqq-channels, and determine their secret identification capacity. In the first case (without privacy), we find the identification capacity always equal to the transmission capacity. In the second case, we find a dichotomy: either the secrecy capacity (also known as private capacity) of the channel is zero, and then the secrecy identification capacity is also zero, or the secrecy capacity is positive and then the secrecy identification capacity equals the transmission capacity of the main channel without the wiretapper. We perform the same analysis for the case of arbitrarily varying wiretap cqq-channels (cqq-AVWC) with analogous findings, and make several observations regarding the continuity and super-additivity of the identification capacity in the latter case.
引用
收藏
页码:6734 / 6749
页数:16
相关论文
共 45 条
[1]   IDENTIFICATION VIA CHANNELS [J].
AHLSWEDE, R ;
DUECK, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) :15-29
[2]   Strong converse for identification via quantum channels [J].
Ahlswede, R ;
Winter, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) :569-579
[3]   IDENTIFICATION IN THE PRESENCE OF FEEDBACK - A DISCOVERY OF NEW CAPACITY FORMULAS [J].
AHLSWEDE, R ;
DUECK, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (01) :30-36
[4]   ELIMINATION OF CORRELATION IN RANDOM CODES FOR ARBITRARILY VARYING CHANNELS [J].
AHLSWEDE, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 44 (02) :159-175
[5]   NEW DIRECTIONS IN THE THEORY OF IDENTIFICATION VIA CHANNELS [J].
AHLSWEDE, R ;
ZHANG, Z .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) :1040-1050
[6]   Classical capacity of classical-quantum arbitrarily varying channels [J].
Ahlswede, Rudolf ;
Blinovsky, Vladimir .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (02) :526-533
[7]  
Ahswede R, 2006, LECT NOTES COMPUT SC, V4123, P107
[8]  
Bjelakovic I., 2011, IEEE Information Theory Workshop (ITW 2011), P60, DOI 10.1109/ITW.2011.6089569
[9]   Classical Capacities of Compound and Averaged Quantum Channels [J].
Bjelakovic, Igor ;
Boche, Holger .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :3360-3374
[10]   THE CAPACITY OF A CLASS OF CHANNELS [J].
BLACKWELL, D ;
BREIMAN, L ;
THOMASIAN, AJ .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (04) :1229-1241