Periodic solution of a chemostat model with Monod growth rate and impulsive state feedback control

被引:47
作者
Guo, Hongjian [1 ,2 ]
Chen, Lansun [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang 464000, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Microorganism; Continuous culture; Impulsive control; Impulsive autonomous system; Periodic solution of order one;
D O I
10.1016/j.jtbi.2009.07.007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we develop a mathematical model concerning a chemostat with impulsive state feed back control to investigate the periodicity of bioprocess. By the existence criteria of periodic solution of a general planar impulsive autonomous system, the conditions under which the model has a periodic solution of order one are obtained. Furthermore, we estimate the position of the periodic solution of order one and discuss the existence of periodic solution of order two. The theoretical results and numerical simulations indicate that the chemostat system with impulsive state feedback control either tends to a stable state or has a periodic solution, which depends on the feedback state, the control parameter of the dilution rate and the initial concentrations of microorganisms and substrate. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:502 / 509
页数:8
相关论文
共 21 条
[1]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[2]  
BERETTA E, 1994, DIFF EQUAT, V2, pR263
[3]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[4]   Feedback control for chemostat models [J].
De Leenheer, P ;
Smith, H .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (01) :48-70
[5]   A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria [J].
Ellermeyer, S ;
Hendrix, J ;
Ghoochan, N .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 222 (04) :485-494
[6]   Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems [J].
Flegr, J .
JOURNAL OF THEORETICAL BIOLOGY, 1997, 188 (01) :121-126
[7]   Feedback control for nonmonotone competition models in the chemostat [J].
Gouzé, JL ;
Robledo, G .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (04) :671-690
[8]   Chaos and its control in an impulsive differential system [J].
Jiang, Guirong ;
Lu, Qishao ;
Qian, Linning .
CHAOS SOLITONS & FRACTALS, 2007, 34 (04) :1135-1147
[9]   Complex dynamics of a Holling type II prey-predator system with state feedback control [J].
Jiang, Guirong ;
Lu, Qishao ;
Qian, Linning .
CHAOS SOLITONS & FRACTALS, 2007, 31 (02) :448-461
[10]   LIMIT-CYCLES IN A CHEMOSTAT-RELATED MODEL [J].
KUANG, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (06) :1759-1767