Online biophysical predictions for SARS-CoV-2 proteins

被引:1
作者
Kagami, Luciano [1 ]
Roca-Martinez, Joel [1 ,2 ,3 ]
Gavalda-Garcia, Jose [1 ,2 ,3 ]
Ramasamy, Pathmanaban [1 ,2 ,3 ,4 ,5 ]
Feenstra, K. Anton [6 ,7 ]
Vranken, Wim F. [1 ,2 ,3 ]
机构
[1] ULB VUB, Interuniv Inst Bioinformat Brussels, Triomflaan, B-1050 Brussels, Belgium
[2] Vrije Univ Brussel, Struct Biol Brussels, Pl Laan 2, B-1050 Brussels, Belgium
[3] VIB Struct Biol Res Ctr, Pl Laan 2, B-1050 Brussels, Belgium
[4] VIB, VIB UGent Ctr Med Biotechnol, B-9000 Ghent, Belgium
[5] Univ Ghent, Fac Hlth Sci & Med, Dept Biomol Med, B-9000 Ghent, Belgium
[6] Vrije Univ Amsterdam, Dept Comp Sci, IBIVU Ctr Integrat Bioinformat, NL-1081 HV Amsterdam, Netherlands
[7] Vrije Univ Amsterdam, AIMMS Amsterdam Inst Mol Med & Syst, NL-1081 HV Amsterdam, Netherlands
基金
欧盟地平线“2020”;
关键词
Proteins; Single sequence based predictions; Biophysical features; SARS-CoV-2; COVID-19; DATA-BANK; SEQUENCE; DATABASE; DYNAMICS; UPDATE; SITES;
D O I
10.1186/s12860-021-00362-w
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: The SARS-CoV-2 virus, the causative agent of COVID-19, consists of an assembly of proteins that determine its infectious and immunological behavior, as well as its response to therapeutics. Major structural biology efforts on these proteins have already provided essential insights into the mode of action of the virus, as well as avenues for structure-based drug design. However, not all of the SARS-CoV-2 proteins, or regions thereof, have a well-defined three-dimensional structure, and as such might exhibit ambiguous, dynamic behaviour that is not evident from static structure representations, nor from molecular dynamics simulations using these structures. Main: We present a website (https://bio2byte.be/sars2/) that provides protein sequence-based predictions of the backbone and side-chain dynamics and conformational propensities of these proteins, as well as derived early folding, disorder, beta-sheet aggregation, protein-protein interaction and epitope propensities. These predictions attempt to capture the inherent biophysical propensities encoded in the sequence, rather than context-dependent behaviour such as the final folded state. In addition, we provide the biophysical variation that is observed in homologous proteins, which gives an indication of the limits of their functionally relevant biophysical behaviour. Conclusion: The https://bio2byte.be/sars2/ website provides a range of protein sequence-based predictions for 27 SARS-CoV-2 proteins, enabling researchers to form hypotheses about their possible functional modes of action.
引用
收藏
页数:7
相关论文
共 24 条
[1]  
Abeln S., 2020, SERENDIP CE SEQUENCE, V272
[2]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[3]   The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data [J].
Berman, Helen ;
Henrick, Kim ;
Nakamura, Haruki ;
Markley, John L. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D301-D303
[4]  
Bio2Byte group, BIO2BYTE P0DTC9 INF
[5]   The PSIPRED Protein Analysis Workbench: 20 years on [J].
Buchan, Daniel W. A. ;
Jones, David T. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W402-W407
[6]   The DynaMine webserver: predicting protein dynamics from sequence [J].
Cilia, Elisa ;
Pancsa, Rita ;
Tompa, Peter ;
Lenaerts, Tom ;
Vranken, Wim F. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) :W264-W270
[7]   From protein sequence to dynamics and disorder with DynaMine [J].
Cilia, Elisa ;
Pancsa, Rita ;
Tompa, Peter ;
Lenaerts, Tom ;
Vranken, Wim F. .
NATURE COMMUNICATIONS, 2013, 4
[8]   SAbDab: the structural antibody database [J].
Dunbar, James ;
Krawczyk, Konrad ;
Leem, Jinwoo ;
Baker, Terry ;
Fuchs, Angelika ;
Georges, Guy ;
Shi, Jiye ;
Deane, Charlotte M. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1140-D1146
[9]   SeRenDIP: SEquential REmasteriNg to DerIve profiles for fast and accurate predictions of PPI interface positions [J].
Hou, Qingzhen ;
De Geest, Paul F. G. ;
Griffioen, Christian J. ;
Abeln, Sanne ;
Heringa, Jaap ;
Feenstra, K. Anton .
BIOINFORMATICS, 2019, 35 (22) :4794-4796
[10]   Seeing the trees through the forest: sequence-based homo- and heteromeric protein-protein interaction sites prediction using random forest [J].
Hou, Qingzhen ;
De Geest, Paul F. G. ;
Vranken, Wim F. ;
Heringa, Jaap ;
Feenstra, K. Anton .
BIOINFORMATICS, 2017, 33 (10) :1479-1487