Exponentially affine martingales, affine measure changes and exponential moments of affine processes

被引:39
|
作者
Kallsen, Jan [1 ]
Muhle-Karbe, Johannes [2 ]
机构
[1] Univ Kiel, D-24098 Kiel, Germany
[2] Univ Vienna, Fak Math, A-1090 Vienna, Austria
关键词
Affine processes; Exponential martingale; Uniform integrability; Change of measure; Exponential moments; Generalized Riccati equation; STOCHASTIC VOLATILITY; MODELS;
D O I
10.1016/j.spa.2009.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider local martingales of exponential form M = e(x) or E(X), where X denotes one component of a multivariate affine process. We give a weak sufficient criterion for M to be a true martingale. As a first application, we derive a simple sufficient condition for absolute continuity of the laws of two given affine processes. As a second application, we study whether the exponential moments of an affine process solve a generalized Riccati equation. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 181
页数:19
相关论文
共 49 条
  • [41] Markovian lifts of positive semidefinite affine Volterra-type processes
    Christa Cuchiero
    Josef Teichmann
    Decisions in Economics and Finance, 2019, 42 : 407 - 448
  • [42] Transform formulae for linear functionals of affine processes and their bridges on positive semidefinite matrices
    Kang, Chulmin
    Kang, Wanmo
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (06) : 2419 - 2445
  • [43] Affine pure-jump processes on positive Hilbert-Schmidt operators
    Cox, Sonja
    Karbach, Sven
    Khedher, Asma
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 151 : 191 - 229
  • [44] EXACT AND HIGH-ORDER DISCRETIZATION SCHEMES FOR WISHART PROCESSES AND THEIR AFFINE EXTENSIONS
    Ahdida, Abdelkoddousse
    Alfonsi, Aurelien
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (03) : 1025 - 1073
  • [45] Asymptotic behavior of the Laplacian quasi-maximum likelihood estimator of affine causal processes
    Bardet, Jean-Marc
    Boularouk, Yakoub
    Djaballah, Khedidja
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 452 - 479
  • [46] Fractal-based exponential distribution of urban density and self-affine fractal forms of cities
    Chen, Yanguang
    Feng, Jian
    CHAOS SOLITONS & FRACTALS, 2012, 45 (11) : 1404 - 1416
  • [47] VIX option pricing-Applied by affine models with tempered stable processes and stochastic parameter
    Yin Y.
    Wu H.
    Pang R.
    Zhu F.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2020, 40 (10): : 2530 - 2545
  • [48] Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump
    Huang, Shoude
    Guo, Xunxiang
    CHAOS SOLITONS & FRACTALS, 2022, 158
  • [49] Affine processes on positive semidefinite d x d matrices have jumps of finite variation in dimension d > 1
    Mayerhofer, Eberhard
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (10) : 3445 - 3459