Exponentially affine martingales, affine measure changes and exponential moments of affine processes

被引:39
|
作者
Kallsen, Jan [1 ]
Muhle-Karbe, Johannes [2 ]
机构
[1] Univ Kiel, D-24098 Kiel, Germany
[2] Univ Vienna, Fak Math, A-1090 Vienna, Austria
关键词
Affine processes; Exponential martingale; Uniform integrability; Change of measure; Exponential moments; Generalized Riccati equation; STOCHASTIC VOLATILITY; MODELS;
D O I
10.1016/j.spa.2009.10.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider local martingales of exponential form M = e(x) or E(X), where X denotes one component of a multivariate affine process. We give a weak sufficient criterion for M to be a true martingale. As a first application, we derive a simple sufficient condition for absolute continuity of the laws of two given affine processes. As a second application, we study whether the exponential moments of an affine process solve a generalized Riccati equation. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 181
页数:19
相关论文
共 49 条
  • [1] EXPONENTIAL MOMENTS OF AFFINE PROCESSES
    Keller-Ressel, Martin
    Mayerhofer, Eberhard
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (02) : 714 - 752
  • [2] A characterization of the martingale property of exponentially affine processes
    Mayerhofer, Eberhard
    Muhle-Karbe, Johannes
    Smirnov, Alexander G.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (03) : 568 - 582
  • [3] AFFINE VOLTERRA PROCESSES
    Jaber, Eduardo Abi
    Larsson, Martin
    Pulido, Sergio
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (05) : 3155 - 3200
  • [4] Exponential Martingales and Changes of Measure for Counting Processes
    Sokol, Alexander
    Hansen, Niels Richard
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2015, 33 (05) : 823 - 843
  • [5] Affine processes are regular
    Keller-Ressel, Martin
    Schachermayer, Walter
    Teichmann, Josef
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (3-4) : 591 - 611
  • [6] Affine processes are regular
    Martin Keller-Ressel
    Walter Schachermayer
    Josef Teichmann
    Probability Theory and Related Fields, 2011, 151 : 591 - 611
  • [7] Affine LIBOR models driven by real-valued affine processes
    Mueller, Wolfgang
    Waldenberger, Stefan
    STOCHASTIC MODELS, 2016, 32 (02) : 333 - 350
  • [8] Existence of limiting distribution for affine processes
    Jin, Peng
    Kremer, Jonas
    Ruediger, Barbara
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [9] Markov-modulated affine processes
    Kurt, Kevin
    Frey, Rudiger
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 : 391 - 422
  • [10] AFFINE PROCESSES ON POSITIVE SEMIDEFINITE MATRICES
    Cuchiero, Christa
    Filipovic, Damir
    Mayerhofer, Eberhard
    Teichmann, Josef
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (02) : 397 - 463