THE LARGEST CHARACTER DEGREES OF THE SYMMETRIC AND ALTERNATING GROUPS

被引:5
作者
Halasi, Zoltan [1 ]
Hannusch, Carolin [1 ]
Hung Ngoc Nguyen [2 ]
机构
[1] Univ Debrecen, Inst Math, Dept Algebra & Number Theory, Pf 12, H-4010 Debrecen, Hungary
[2] Univ Akron, Dept Math, Akron, OH 44325 USA
关键词
Symmetric groups; alternating groups; character degrees; largest character; ORDER;
D O I
10.1090/proc/12920
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the largest character degree of an alternating group An with n >= 5 can be bounded in terms of smaller degrees in the sense that b(A(n))(2) < Sigma(psi is an element of Irr(An)) (psi(1)<b(An)) psi(1)(2) where Irr(A(n)) and b(A(n)) respectively denote the set of irreducible complex characters of A(n) and the largest degree of a character in Irr(A(n)). This confirms a prediction of I. M. Isaacs for the alternating groups and answers a question of M. Larsen, G. Malle, and P. H. Tiep.
引用
收藏
页码:1947 / 1960
页数:14
相关论文
共 14 条
[1]   Groups with few characters of small degrees [J].
Berkovich, Y .
ISRAEL JOURNAL OF MATHEMATICS, 1999, 110 (1) :325-332
[2]   On a conjecture of Gluck [J].
Cossey, James P. ;
Halasi, Zoltan ;
Maroti, Attila ;
Hung Ngoc Nguyen .
MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) :1067-1080
[3]   A bound on the order of a group having a large character degree [J].
Durfee, Christina ;
Jensen, Sara .
JOURNAL OF ALGEBRA, 2011, 338 (01) :197-206
[4]   THE HOOK GRAPHS OF THE SYMMETRIC GROUP [J].
FRAME, JS ;
ROBINSON, GD ;
THRALL, RM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (03) :316-324
[5]  
Hung N. N., 2015, FINITE GROUPS UNPUB
[6]   Bounding the order of a group with a large character degree [J].
Isaacs, I. M. .
JOURNAL OF ALGEBRA, 2011, 348 (01) :264-275
[7]  
James G. D., 1978, LECT NOTES MATH, V682
[8]   The largest irreducible representations of simple groups [J].
Larsen, Michael ;
Malle, Gunter ;
Pham Huu Tiep .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 106 :65-96
[9]   Bounding group orders by large character degrees: A question of Snyder [J].
Lewis, Mark L. .
JOURNAL OF GROUP THEORY, 2014, 17 (06) :1081-1116
[10]  
MCKAY J, 1976, MATH COMPUT, V30, P624, DOI 10.1090/S0025-5718-1976-0404414-X