Harmonic chains and the thermal diode effect

被引:16
|
作者
Kalantar, Na'im [1 ]
Agarwalla, Bijay Kumar [2 ]
Segal, Dvira [1 ,3 ,4 ]
机构
[1] Univ Toronto, Dept Chem, 80 St George St, Toronto, ON M5S 3H6, Canada
[2] Indian Inst Sci Educ & Res, Dept Phys, Doctor Homi Bhabha Rd, Pune 411008, Maharashtra, India
[3] Univ Toronto, Ctr Quantum Informat & Quantum Control, 80 St George St, Toronto, ON M5S 3H6, Canada
[4] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HEAT-TRANSPORT; ENERGY-FLOW; RECTIFICATION; CONDUCTANCE; CRYSTAL;
D O I
10.1103/PhysRevE.103.052130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Harmonic oscillator chains connecting two harmonic reservoirs at different constant temperatures cannot act as thermal diodes, irrespective of structural asymmetry. However, here we prove that perfectly harmonic junctions can rectify heat once the reservoirs (described by white Langevin noise) are placed under temperature gradients, which are asymmetric at the two sides, an effect that we term "temperature-gradient harmonic oscillator diodes." This nonlinear diode effect results from the additional constraint-the imposed thermal gradient at the boundaries. We demonstrate the rectification behavior based on the exact analytical formulation of steady-state heat transport in harmonic systems coupled to Langevin baths, which can describe quantum and classical transport, both regimes realizing the diode effect under the involved boundary conditions. Our study shows that asymmetric harmonic systems, such as room-temperature hydrocarbon molecules with varying side groups and end groups, or a linear lattice of trapped ions may rectify heat by going beyond simple boundary conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Nonequilibrium thermal rectification at the junction of harmonic chains
    Dmitriev, Sergey V.
    Kuzkin, Vitaly A.
    Krivtsov, Anton M.
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [2] THERMAL DIFFUSE-SCATTERING AND ORDERING IN HARMONIC AND NON-HARMONIC CHAINS
    MAIR, SL
    JOHNSON, CHJ
    ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 : C119 - C119
  • [3] Influence of capacitance and thermal fluctuations on the Josephson diode effect in asymmetric higher-harmonic SQUIDs
    Seleznev, G. S.
    Fominov, Ya, V
    PHYSICAL REVIEW B, 2024, 110 (10)
  • [4] Thermal Optimization of the Second Harmonic Generation with Tapered Diode Lasers
    Sahm, A.
    Uebernickel, M.
    Fiebig, C.
    Paschke, K.
    Erbert, G.
    Traenkle, G.
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS, DEVICES, AND APPLICATIONS X, 2011, 7917
  • [5] Thermal transport in out-of-equilibrium quantum harmonic chains
    Nicacio, F.
    Ferraro, A.
    Imparato, A.
    Paternostro, M.
    Semiao, F. L.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [6] Thermal conductance of one-dimensional disordered harmonic chains
    Ash, Biswarup
    Amir, Ariel
    Bar-Sinai, Yohai
    Oreg, Yuval
    Imry, Yoseph
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [7] Anomalous thermal transport in disordered harmonic chains and carbon nanotubes
    Ni, Xiaoxi
    Leek, Meng Lee
    Wang, Jian-Sheng
    Feng, Yuan Ping
    Li, Baowen
    PHYSICAL REVIEW B, 2011, 83 (04)
  • [8] Characteristics of laser diode end-pumped laser crystal on thermal effect and second harmonic generation
    College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
    Zhongguo Jiguang, 2007, 3 (359-363): : 359 - 363
  • [9] On the effect of IF power nulls in Schottky diode harmonic mixers
    Feinäugle, R
    Hübers, HW
    Röser, HP
    Hesler, JL
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (01) : 134 - 142
  • [10] Thermal Transport in Disordered Harmonic Chains Revisited: Formulation of Thermal Conductivity and Local Temperatures
    Hattori, Kiminori
    Kumatoriya, Shohei
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (11)