Intracellular microelectrode measurements revealed that the liverwort Conocephalum conicum generates all-or-none action potentials (APs) in response to a sudden temperature drop. In plants with anion and potassium conductance blocked, dose-dependent voltage transients (VTs) were evoked by cold stimuli. These VTs did not propagate. When the external concentration of Ca2+ was decreased or calcium channel inhibitors (La3+, Gd3+, verapamil, Mg2+, Mn2+) were used, inhibition of VTs was observed. Amplitudes of both At's and VTs grew when Sr2+ ions, known to release calcium from internal stores, were added to the medium. Neomycin, which suppresses phospholipase C and indirectly affects inositol triphosphate formation, caused substantial inhibition of both APs and VTs. It is concluded that a temperature drop elucidated membrane potential changes due to calcium influx both from external and internal stores.