Exploring social-ecological trade-offs in fisheries using a coupled food web and human behavior model

被引:6
作者
Innes-Gold, Anne A. [1 ]
Pavlowich, Tyler [2 ]
Heinichen, Margaret [3 ]
McManus, M. Conor [4 ]
McNamee, Jason [5 ]
Collie, Jeremy [3 ]
Humphries, Austin T. [1 ,3 ]
机构
[1] Univ Rhode Isl, Dept Fisheries Anim & Vet Sci, Kingston, RI 02881 USA
[2] AIS Inc, Northeast Fisheries Sci Ctr, Narragansett, RI USA
[3] Univ Rhode Isl, Grad Sch Oceanog, Narragansett, RI 02882 USA
[4] Rhode Isl Dept Environm Management, Div Marine Fisheries, Jamestown, RI USA
[5] Bur Nat Resources, Rhode Isl Dept Environm Management, Providence, RI USA
来源
ECOLOGY AND SOCIETY | 2021年 / 26卷 / 02期
基金
美国国家科学基金会;
关键词
agent-based model; Ecopath with Ecosim; ecosystem-based fisheries management; estuary; forage fish; social-ecological system; AGENT-BASED MODEL; UNIT-EFFORT; NARRAGANSETT BAY; RELATIVE ABUNDANCE; ECOSYSTEM SERVICES; STRUCTURAL-CHANGES; HUMAN DIMENSIONS; FORAGE FISH; CATCH; MANAGEMENT;
D O I
10.5751/ES-12451-260240
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Marine fisheries represent a social-ecological system driven by both complex ecological processes and human interactions. Ecosystem-based fisheries management requires an understanding of both the biological and social components, and management failure can occur when either are excluded. Despite the significance of both, most research has focused on characterizing biological uncertainty rather than on better understanding the impacts of human behavior because of the difficulty of incorporating human behavior into simulation models. In this study, we use the fisheries in Narragansett Bay (Rhode Island, USA) as a case study to demonstrate how coupled modeling can be used to represent interactions between the food web and fishers in a social-ecological system. Narragansett Bay holds both a commercial fishery for forage fish, i.e., Atlantic menhaden (Brevoortia tyrannus) and a recreational fishery for their predators, i.e. striped bass (Morone saxatilis) and bluefish (Pomatomus saltatrix). To explore trade-offs between these two fisheries, we created a food web model and then coupled it to a recreational fishers' behavior model, creating a dynamic social-ecological representation of the ecosystem. Fish biomass was projected until 2030 in both the stand-alone food web model and the coupled social-ecological model, with results highlighting how the incorporation of fisher behavior in modeling can lead to changes in the ecosystem. We examined how model outputs varied in response to three attributes: (1) the forage fish commercial harvest scenario, (2) the predatory (piscivorous) fish abundance-catch relationship in the recreational fishery, and (3) the rate at which recreational fishers become discouraged (termed "satisfaction loss"). Higher commercial harvest of forage fish led to lower piscivorous fish biomass but had minimal effects on the number of piscivorous fish caught recreationally or recreational fisher satisfaction. Both the abundancecatch relationship and satisfaction loss rate had notable effects on the fish biomass, the number of fish caught recreationally, and recreational fisher satisfaction. Currently, the lack of spatial and location-specific fisher behavior data limits the predictive use of our model. However, our modeling framework shows that fisher behavior can be successfully incorporated into a coupled social-ecological model through the use of agent-based modeling, and our results highlight that its inclusion can influence ecosystem dynamics. Because fisher decision making and the ecosystem can influence one another, social responses to changing ecosystems should be explicitly integrated into ecosystem modeling to improve ecosystem-based fisheries management efforts.
引用
收藏
页数:25
相关论文
共 111 条
  • [101] Implementing effective fisheries-management systems - management strategy evaluation and the Australian partnership approach
    Smith, ADM
    Sainsbury, KJ
    Stevens, RA
    [J]. ICES JOURNAL OF MARINE SCIENCE, 1999, 56 (06) : 967 - 979
  • [102] Southeast Data Assessment and Review (SEDAR), 2015, SEDAR 40 ATL MENH ST
  • [103] Southeast Data Assessment and Review (SEDAR), 2020, EC REF POINTS STOCK
  • [104] Szczepanski, 2013, THESIS U RHODE ISLAN, DOI [10.23860/diss-szczepanski-john-2013, DOI 10.23860/DISS-SZCZEPANSKI-JOHN-2013]
  • [105] Terceiro M., 2010, Stock Assessment of Summer Flounder for 2010
  • [106] Relationships between catch per unit effort, catchability, and abundance based on actual measurements of salmonids in a mountain stream
    Tsuboi, Jun-ichi
    Endou, Shinsuke
    [J]. TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY, 2008, 137 (02) : 496 - 502
  • [107] Predicting changes in the catchability coefficient through effort sorting as less skilled fishers exit the fishery during stock declines
    van Poorten, Brett T.
    Walters, Carl J.
    Ward, Hillary G. M.
    [J]. FISHERIES RESEARCH, 2016, 183 : 379 - 384
  • [108] Ecologists should not use statistical significance tests to interpret simulation model results
    White, J. Wilson
    Rassweiler, Andrew
    Samhouri, Jameal F.
    Stier, Adrian C.
    White, Crow
    [J]. OIKOS, 2014, 123 (04) : 385 - 388
  • [109] Behavioural diversity in fishing-Towards a next generation of fishery models
    Wijermans, Nanda
    Boonstra, Wiebren J.
    Orach, Kirill
    Hentati-Sundberg, Jonas
    Schluter, Maja
    [J]. FISH AND FISHERIES, 2020, 21 (05) : 872 - 890
  • [110] Wildenhain, 2016, THESIS U NOTRE DAME