Interband π Plasnnon of Graphene Nanopores: A Potential Sensing Mechanism for DNA Nucleotides

被引:15
作者
Fotouhi, Bashir [1 ]
Ahmadi, Vahid [1 ]
Abasifard, Mostafa [1 ]
Roohi, Ramin [1 ]
机构
[1] Tarbiat Modares Univ, Sch Elect & Comp Engn, Tehran, Iran
关键词
SURFACE-PLASMON RESONANCE; SOLID-STATE NANOPORE; DIPOLE APPROXIMATION METHOD; SINGLE-MOLECULE DETECTION; ELECTRONIC TRANSPORT; FIELD-ENHANCEMENT; RECENT PROGRESS; TRANSLOCATION; SIZE; NANOPARTICLES;
D O I
10.1021/acs.jpcc.6b02259
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a potential sensing mechanism for DNA nucleotides using the interband pi surface plasmon resonance (SPR) of graphene nanopores. The SPR and field-enhancement properties were investigated using the discrete dipole approximation (DDA) and the finite-difference-time-domain (FDTD) methods, respectively. For graphene nanopores smaller than 10 nm in length, increasing the pore diameter red shifts the SPR peak wavelength, and for larger sheets, the SPR peak wavelength is essentially unchanged by variations in the pore diameter. Presentation of a single nucleotide to the pore significantly changes the SPR properties of the graphene nanopore, and each nucleotide has unique SPR properties. Each nucleotide induces a shift of 2-12 nm in the peak wavelength of each SPR mode, and if all of the modes are considered simultaneously, the type of DNA nucleotide present can be dearly determined. Our results show that the small-size-sensitive interband plasmon in graphene nanopore is probably applicable as a new sensing mechanism for DNA nucleotides.
引用
收藏
页码:13693 / 13700
页数:8
相关论文
共 71 条
[1]   Rhodium Tripod Stars for UV Plasmonics [J].
Alcaraz de la Osa, R. ;
Sanz, J. M. ;
Barreda, A. I. ;
Saiz, J. M. ;
Gonzalez, F. ;
Everitt, H. O. ;
Moreno, F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (22) :12572-12580
[2]   Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns [J].
Alonso-Gonzalez, P. ;
Nikitin, A. Y. ;
Golmar, F. ;
Centeno, A. ;
Pesquera, A. ;
Velez, S. ;
Chen, J. ;
Navickaite, G. ;
Koppens, F. ;
Zurutuza, A. ;
Casanova, F. ;
Hueso, L. E. ;
Hillenbrand, R. .
SCIENCE, 2014, 344 (6190) :1369-1373
[4]   A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly [J].
Amendola, Vincenzo ;
Bakr, Osman M. ;
Stellacci, Francesco .
PLASMONICS, 2010, 5 (01) :85-97
[5]   Silicene as a new potential DNA sequencing device [J].
Amorim, Rodrigo G. ;
Scheicher, Ralph H. .
NANOTECHNOLOGY, 2015, 26 (15)
[6]   Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond [J].
Arjmandi-Tash, Hadi ;
Belyaeva, Liubov A. ;
Schneider, Gregory F. .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (03) :476-493
[7]   Dynamic and Electronic Transport Properties of DNA Translocation through Graphene Nanopores [J].
Avdoshenko, Stanislav M. ;
Nozaki, Daijiro ;
da Rocha, Claudia Gomes ;
Gonzalez, Jhon W. ;
Lee, Myeong H. ;
Gutierrez, Rafael ;
Cuniberti, Gianaurelio .
NANO LETTERS, 2013, 13 (05) :1969-1976
[8]   Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA [J].
Belkin, Maxim ;
Chao, Shu-Han ;
Jonsson, Magnus P. ;
Dekker, Cees ;
Aksimentiev, Aleksei .
ACS NANO, 2015, 9 (11) :10598-10611
[9]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[10]  
Chang S, 2009, NAT NANOTECHNOL, V4, P297, DOI [10.1038/NNANO.2009.48, 10.1038/nnano.2009.48]