A Caffarelli-Kohn-Nirenberg type inequality on Riemannian manifolds

被引:4
作者
Bozhkov, Yuri [1 ]
机构
[1] Univ Estadual Campinas, IMECC, UNICAMP, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Caffarelli-Kohn-Nirenberg inequality; Conformal Killing vector fields; HARDY INEQUALITIES; POSITIVE SOLUTIONS;
D O I
10.1016/j.aml.2010.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a generalization to Riemannian manifolds of the Caffarelli-Kohn-Nirenberg inequality. The applied method is based on the use of conformal Killing vector fields and E. Mitidieri's approach to Hardy inequalities. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1166 / 1169
页数:4
相关论文
共 14 条
[1]   Some improved Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Colorado, E ;
Peral, I .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (03) :327-345
[2]  
Arendt W, 2006, CONTEMP MATH, V412, P51
[3]  
BOZHKOV Y, 2008, LECT NOTES SEMIN INT, V7, P65
[4]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[5]   Hardy inequalities on non-compact Riemannian manifolds [J].
Carron, G .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (10) :883-891
[6]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[7]  
2-I
[8]   Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities [J].
Costa, David G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :311-317
[9]   Complete manifolds with non-negative Ricci curvature and the Caffarelli-Kohn-Nirenberg inequalities [J].
do Carmo, MP ;
Xia, CY .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :818-826
[10]   Some properties of solutions to the singular quasilinear problems [J].
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :682-688