INVARIANT SUBSPACES IN BERGMAN SPACE OVER THE BIDISC

被引:8
作者
Redett, David [1 ]
Tung, James [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Math, Ft Wayne, IN 46805 USA
关键词
D O I
10.1090/S0002-9939-10-10337-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the doubly commuting condition restricted to invariant subspaces of the Bergman space over the bidisc. This condition was first introduced by V. Mandrekar in the setting of the Hardy space over the bidisc.
引用
收藏
页码:2425 / 2430
页数:6
相关论文
共 50 条
[21]   Compactness of Composition Operators on the Bergman Space of the Bidisc [J].
Clos, Timothy G. ;
Cuckovic, Zeljko ;
Sahutoglu, Sonmez .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2025, 97 (03)
[22]   A QUESTION ON INVARIANT SUBSPACES OF BERGMAN SPACES [J].
BERCOVICI, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :759-760
[23]   Complemented invariant subspaces in Bergman spaces [J].
Korenblum, B ;
Zhu, KH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 71 :467-480
[24]   INVARIANT SUBSPACES OF THE BERGMAN SPACE AND SOME SUBNORMAL-OPERATORS IN A(1)/A(2) [J].
YANG, LM .
MICHIGAN MATHEMATICAL JOURNAL, 1995, 42 (02) :301-310
[25]   The Root Operator on Finite Zero Based Invariant Subspaces of the Weighted Bergman Space [J].
Lopez-Garcia, Marcos ;
Lopez-Salmoran, Ivan .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) :1231-1238
[26]   The Root Operator on Finite Zero Based Invariant Subspaces of the Weighted Bergman Space [J].
Marcos López-García ;
Iván López-Salmorán .
Complex Analysis and Operator Theory, 2013, 7 :1231-1238
[27]   EXTREMALS FOR SUBSPACES OF THE BERGMAN SPACE [J].
CIMA, JA ;
DERRICK, WR .
HOUSTON JOURNAL OF MATHEMATICS, 1994, 20 (04) :623-628
[28]   The eigenvalues, numerical ranges, and invariant subspaces of the Bergman Toeplitz operators over the bidisk [J].
Yongning Li ;
Yin Zhao ;
Xuanhao Ding .
Annals of Functional Analysis, 2024, 15
[29]   The eigenvalues, numerical ranges, and invariant subspaces of the Bergman Toeplitz operators over the bidisk [J].
Li, Yongning ;
Zhao, Yin ;
Ding, Xuanhao .
ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (02)
[30]   Ranks of invariant subspaces of the Hardy space over the bidisk [J].
Izuchi, Kei Ji ;
Izuchi, Kou Hei ;
Izuchi, Yuko .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 659 :101-139