Synthesis of Cu-doped Li4Ti5O12 anode materials with a porous structure for advanced electrochemical energy storage: Lithium-ion batteries

被引:33
作者
Deng, Xiaoqian [1 ]
Li, Wenrui [1 ]
Zhu, Menghan [1 ]
Xiong, Deping [1 ]
He, Miao [1 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Li4Ti5O12; Freeze-drying; Cu-doped; Anode; Lithium-ion batteries; RATE PERFORMANCE; RATE CAPABILITY; NANOSHEETS; NANOPARTICLES; STABILITY; CAPACITY; SPINEL; COMPOSITES;
D O I
10.1016/j.ssi.2021.115614
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu-doped Li4Ti5O12 anode material is prepared through a facile direct-synthesis-from-solution (DSS) route assisted with freeze-drying. The Cu-doping can reduce the charge transfer resistance and enhance the lithium-ion diffusion and electronic conductivity. Among the as-fabricated samples, LTO-0.1Cu sample shows the best cycling performance and rate capability, delivering the capacity of 216.4, 206.4, 195.1, 184.5 and 173.3 mAhg(-1) at 1, 2, 5, 10 and 20C, respectively, and 180.6 mAhg(-1) at 10C after 500 cycles with 83.8% retention. Thus, this work provides an effective approach to improve the electrochemical performance of Li4Ti5O12 as the anode materials for high-rate lithium-ion battery applications.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
ADVANCED ENERGY MATERIALS, 2015, 5 (13)
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]   Capacity degradation of Li4Ti5O12 during long-term cycling in terms of composition and structure [J].
Bai, Xue ;
Li, Tao ;
Bai, Yu-Jun .
DALTON TRANSACTIONS, 2020, 49 (29) :10003-10010
[4]   Preparation and electrochemical performance of F-doped Li4Ti5O12 for use in the lithium-ion batteries [J].
Bai, Xue ;
Li, Wen ;
Wei, Aijia ;
Chang, Qian ;
Zhang, Lihui ;
Liu, Zhenfa .
SOLID STATE IONICS, 2018, 324 :13-19
[5]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[6]   Copper-Doped Dual Phase Li4Ti5O12-TiO2 Nanosheets as High-Rate and Long Cycle Life Anodes for High-Power Lithium-Ion Batteries [J].
Chen, Chengcheng ;
Huang, Yanan ;
An, Cuihua ;
Zhang, Hao ;
Wang, Yijing ;
Jiao, Lifang ;
Yuan, Huatang .
CHEMSUSCHEM, 2015, 8 (01) :114-122
[7]   Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode [J].
Chiu, Hsien-Chieh ;
Lu, Xia ;
Zhou, Jigang ;
Gu, Lin ;
Reid, Joel ;
Gauvin, Raynald ;
Zaghib, Karim ;
Demopoulos, George P. .
ADVANCED ENERGY MATERIALS, 2017, 7 (05)
[8]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[9]   Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries [J].
Feng, Yefeng ;
Bai, Chen ;
Wu, Kaidan ;
Dong, Huafeng ;
Ke, Jin ;
Huang, Xiping ;
Xiong, Deping ;
He, Miao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 843
[10]   Surface-engineered Li4Ti5O12 nanoparticles by TiO2 coating for superior rate capability and electrochemical stability at elevated temperature [J].
Gangaja, Binitha ;
Nair, Shantikumar ;
Santhanagopalan, Dhamodaran .
APPLIED SURFACE SCIENCE, 2019, 480 :817-821